
6

Title:
Accuracy Assessment and Reinforcement Training of Deep Neural Networks in the Context
of Accelerating a Simulation-Based Toolpath Generation Method

Authors:
Tathagata Chakraborty, tathagata.chakr@hcl-software.com, HCLTech
Christine Zuzart, christine.zuzart@hcl-software.com, HCLTech
Chinmaya Panda, chinmay.panda@hcl-software.com, HCLTech
Nitin Umap, nitin.umap@hcl-software.com, HCLTech

Keywords:
Deep Learning, Simulation, Toolpath Generation, CNN, Accuracy Assessment

DOI: 10.14733/cadconfP.2024.6-12

Introduction:
Simulation-driven techniques in science and engineering are now becoming viable with the increasing
availability and affordability of computation power. In Computer-Aided Manufacturing, simulation-
based methods can be thought of as low-code alternatives to traditional computational geometry-based
approaches for generating high-speed toolpaths. Over the long term, the cost of additional computing
power is more than offset by the cost savings of not having to maintain complex software 1. However,
simulation-based techniques are still too compute-intensive for the average computer and for interactive
use. In this paper, we show how deep neural networks (DNNs) can significantly improve the performance
of a simulation-based method for computing high-speed 2.5D toolpaths.

Despite the success of DNNs in many fields, it is still challenging to use DNNs in domains with little or
no margin of error. This is because DNNs generally give over-confident results (in classification problems)
and do not directly report any measure of confidence in their output (in regression) [3]. The lack of an
accuracy measure often restricts their use to error-tolerant domains. In toolpath generation, the margin
of error must be very low, and using DNNs in CNC machining requires robust uncertainty estimation. In
this paper, we also present a novel method for assessing the accuracy of the results predicted by a DNN
that adds a suitable inductive bias when training the model. Uncertainty estimation also enables us to
identify model failures and retrain the model on the failure cases for improved accuracy in a reinforcement
learning loop.

Simulation-based Toolpath Generation:
Deep learning methods are increasingly being used to accelerate simulations in many fields. DNNs
today accelerate fluid flow simulations [12], seismic wave simulations [11], material and micro-structure
simulation [14, 10], and molecular system dynamics [16]. The methods vary widely in how and where
they are applied in the process. However, learning-based methods are increasingly gaining acceptance

1In the case of desktop software, the user bears the additional computation cost, and the cost savings from not having
to maintain complex code accrue to the software developer. Eventually, however, the cost savings get passed down to the
users directly and indirectly via a more robust application.

Proceedings of CAD’24, Eger, Hungary, July 8-10, 2024, 6-12
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

7

Fig. 1: Post-processed toolpaths for an L-shaped pocket with islands using the method described in [2].
Extreme Right: Pixel-based tool engagement computation.

into scientific computing, where, until recently, such techniques were eschewed for their uncertain nature
and lack of accuracy.

In an earlier paper [2], we described a simulation-driven boundary-following algorithm for generating
high-speed toolpaths for 2.5D pockets (see Fig. 1 for some results). The technique was a low-code and
easy-to-implement approach for computing high-speed curvilinear toolpaths. However, the method was
computationally too intensive for interactive applications. Some simulation-based methods, like ours, are
difficult to scale out since one only has a single simulation environment where multiple actions cannot be
simultaneously explored.

In this paper, we extend the work done in [2] by accelerating the computationally intensive part of
the process using a convolutional neural network (CNN). In [2], we compute the toolpath incrementally
as a series of small, fixed-length segments. The orientation of a particular segment is computed based on
the direction of the previous segment and the tool engagement value computed at the current segment.
To determine the next movement direction, the tool engagement values at several orientations are calcu-
lated, and the one closest to the desired engagement is chosen. Computing the tool engagement value
involves capturing two copies of a small region of the framebuffer in the neighborhood of the tool and
calculating the difference in the count of pocket pixels in these two copies (see Fig. 1 (extreme right)).
Synchronization requirements between the CPU and the GPU bottleneck this part of the process.

One way to speed up the simulation process is to reduce the number of orientations evaluated at each
step. This can be done by analyzing the tool’s neighborhood and estimating the most likely direction for
tool movement. However, implementing a conventional algorithm to solve this problem can be tedious
and error-prone since one must account for numerous possible neighborhood configurations. Today, such
problems, that are difficult to solve analytically but where there is sufficient amount of labeled data
available, are best solved using a DNN.

Over-confidence and Accuracy Assessment of DNNs:
Modern DNNs have a large number of parameters, which increases prediction accuracy but may simul-
taneously pressurize the network to memorize the data. Various regularization techniques are therefore
incorporated into the network so that the network generalizes to unseen input data. Regularization pe-
nalizes complex models and reduces overconfident predictions by discouraging overly complex decision
boundaries. However, getting the amount of regularization just right can be challenging. It is often
impractical to train a DNN on all possible input cases. Training the network to recognize all types of
adversarial input is also tricky. A large amount of data is also challenging to obtain and adversely affects
the training time. Due to all this, DNNs are rarely properly calibrated [5]. Additionally, because of
how the cross-entropy loss is computed in classification models, the network always makes very confident
predictions [1].

Accuracy assessment of the predictions from a DNN (or any machine learning model for that matter)

Proceedings of CAD’24, Eger, Hungary, July 8-10, 2024, 6-12
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

8

Fig. 2: A random sample of input training images (66x66 pixels) with the target tool movement angles.

is a long-standing open problem, with much ongoing research [5, 6]. For classification problems, post-
processing techniques where the penultimate layers of the network are analyzed can be used [5, 9]. The
network can also be trained to recognize outliers and report them during inference [4]. A more generic
technique is to use an ensemble of models, where predictions from multiple networks are averaged and
analyzed. Ensemble methods can be used to determine the accuracy of both classification and regression
models [7, 8].

In this paper, we propose a novel method for determining the accuracy of regression models in
simulation-based techniques. We note that this technique can be used only for a limited class of problems,
where additional side-effects of the simulation can be used to add inductive bias to the model. Our tech-
nique is tangentially related to some ideas from physics-guided machine learning [13] and physics-informed
neural networks [15].

Generating the Training Data:
The data for training the DNN is generated using the brute-force simulation method described in [2].
As much data as required for training a DNN can be generated by running the brute-force simulation
method on different pocket shapes and tools. For the results reported here, we trained the CNN model
(see Fig. 3) on approximately 25k input images. An addition 5k images were used as a test or validation
set. In the brute-force method, we capture a small region in the neighborhood of the tool and determine
the next tool movement angle by computing the tool engagement along several different directions. We
generate the input data by saving the captured neighborhood region as an image. For the target data,
we compute the angle that the determined tool direction makes with the x-axis. A set of captured input
images is shown in Fig. 2 along with the target angles. In these images, the tool is rendered in white,
the area outside the pocket is in light gray, the remaining material is in a darker shade of gray, and the
already cut material is colored black.

Models and Performance
A simulation-based toolpath generation strategy involves an agent and an environment and required
balancing exploration with exploitation. One may, therefore, advocate the use of a reinforcement learning
algorithm for this case. However, for this study, we already have a simulation-driven strategy developed
in [2], and the aim is to accelerate the computation rather than discover a toolpath strategy from scratch.
Since our training data consists of images, it immediately suggests using CNNs. However, our input
data (see Fig. 2) occupies a much lower-dimensional space within the domain of images, so even a fully
connected network is likely to perform equally well. Alternately, vision transformers can also be used,
but they are both slow and difficult to train, so we ignored them after some initial testing.

Fig. 3 (right) shows the performance of a fully connected (FC) model and a CNN model (the ar-
chitecture of which is shown in Fig. 3 (left)). At ±10◦ tolerance (we execute the brute-force method
within this range to determine the final move direction), both the FC and CNN models have nearly the
same accuracy. However, at 2.36 million, the FC model requires more than an order of magnitude of
parameters to reach the same level of performance as the CNN model with only 144K parameters. The

Proceedings of CAD’24, Eger, Hungary, July 8-10, 2024, 6-12
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

9

X64×64 C3×3×16
1 MP 32×32

C3×3×16
2MP 16×16

C3×3×16
3 MP 8×8

L1024
1L128

2L8
3angle

eng
1 3 6 12

0

25

50

75

100

Angle Tolerance [in degrees]

A
cc

ur
ac

y

FC (2.36M)
CNN (144K)

Fig. 3: Left: CNN model architecture. Right: Accuracy of the models at different angular tolerances.

results reported in this paper were all generated using the CNN model shown in Fig. 3 (left).

Accuracy Assessment and Results:
Existing techniques for computing a confidence score for neural networks are all generic methods applica-
ble irrespective of the problem domain. We show that for a certain class of problems, there are potentially
more robust methods for estimating the confidence of a neural network.

Our method consists of training the network to predict one or more additional target parameters (see
Fig. 3 (left), where the last layer of the CNN outputs two target values). During training, the sum of the
loss across all the targets is minimized. During inference, the system takes action based on the primary
target value predicted by the model. It then compares the computed additional values with the predicted
ones to determine the accuracy.

The novelty of our method lies in counter-intuitively training the neural network to predict these
additional values. For toolpath generation, the primary target is the tool movement angle, and the
additional target is the engagement value. Apart from helping us determine the accuracy of the prediction,
an additional value, like the potential tool engagement, adds an inductive bias to the model. A physics-
based inductive bias can guide the optimization of the network in the right direction, ensuring that the
network learns the right abstractions. Other additional parameters like the previous tool move direction
can also be added.

Fig. 4 shows the resulting toolpaths for some scenarios – when using the CNN model without any
fallback and tolerance (left), with fallback and ±10◦ tolerance (middle), and with accuracy measurement
and fallback (right). As can be seen in Fig. 4 (left), if we only use the angle predicted by the CNN
model, the model fails in many cases (the ±1◦ tolerance accuracy of the model is only around 77%).
Sometimes, the model’s errors in one place get magnified later when the tool moves over the previously
cut section and encounters regions far from what it has seen in training. With fallback and tolerance
(see Fig. 4 (middle)), the algorithm evaluates a ±10◦ range centered on the direction predicted by the
CNN model and chooses the best direction from among these. In most cases, this approach results in
an almost usable toolpath. However, sometimes, such a toolpath can have some sharp corners and kinks
where the correct direction may fall just outside the tolerance range or is clearly wrong (see inset Fig. 4
(middle)).

No easy methods exist to identify these errors without some form of accuracy assessment. With
accuracy assessment, we compare the engagement value predicted by the network with that computed
when we move in the general direction predicted by the network. Suppose there is a significant difference

Proceedings of CAD’24, Eger, Hungary, July 8-10, 2024, 6-12
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

10

Fig. 4: Toolpaths generated using predictions from a DNN - without any tolerance (left), with tolerance
(middle), with accuracy assessment and fallback (right).

in the predicted and computed engagement values (if the predicted values are assumed to distributed
normally around the actual value, then, for example, a value that is more than two standard deviation
away can be considered significant). In that case, we reject the prediction and fallback on the brute-force
method where a much larger range of angles ±90◦ is evaluated. Algorithm 1 shows an outline of this
method, where the function PredictDNN evaluates the CNN model and the FindBestMove function is
the brute-force function that evaluates all the angles in a given range centered around a given direction,
both functions returning an angle and tool engagement pair of values. The identified failure cases can be
stored and used to retrain the model in a reinforcement learning loop.

Algorithm 1: Assessing the accuracy of the move direction predicted by the CNN
Input: σ // standard deviation of the engagement value difference

ctx // the context neighborhood image input
Ptp = [p1, p2, · · · , pn] // points comprising the toolpath

Function FindNextMove(ctx, Ptp):
(θpred, εpred)← PredictDNN(ctx)

d⃗← (sin θpred, cos θpred) // direction predicted by the CNN model
(θbest, εbest)← FindBestMove(Ptp, d⃗,±10◦)
if |εpred − εbest| > 2σ then

d⃗← pn − pn−1 // direction of the last toolpath segment
(θbest, εbest)← FindBestMove(Ptp, d⃗,±90◦)

end
return θbest

At first glance, our system may seem similar to multi-target DNNs (MT-DNNs) (see [17]). However,
while MT-DNNs try to club multiple tasks into the same model, our approach trains the model for a single
task but adds multiple redundant targets. Also, in MT-DNNs, the additional targets are not actionable,
and there is no attempt to measure the accuracy of such systems using these additional target values.

Performance Improvements:
In the brute-force version of the simulation-based method as described in [2], each step in the process
required, on average, the evaluation of around 180 different angles (from −90◦ to 90◦, in 1◦ increments).
It is possible to reduce this number by adding various heuristics to break out early from the evaluation
as soon as a likely direction is found. It is also possible to evaluate the full angle range progressively.

Proceedings of CAD’24, Eger, Hungary, July 8-10, 2024, 6-12
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

11

However, this increases the number of edge cases that must be specially handled and complicates an
otherwise simple algorithm.

With a DNN, we can reduce the number of evaluated angles by 9 fold to the range −10◦ to 10◦

centered around the direction predicted by the DNN. The fully connected and the CNN models both
gave over 95% accuracy on the test data when the accuracy was evaluated in the ±10◦ range (see Fig. 3).
To the net time taken, we must add the model inference time. However, in practice, the inference time
is negligible compared to the time taken to copy the framebuffer regions from the GPU to the CPU. The
inference overhead is small because, although the models contain many parameters, the computation is
carried out in a highly vectorized form in both CPU and GPU.

Conclusions:
In this paper, we have suggested a novel method for adding inductive bias to a neural network model
by having it predict additional target parameters. We have shown that for simulation-based methods
where backtracking at least one step is possible, one can measure the accuracy of the network prediction
by comparing the simulation-generated value of the additional parameter with that predicted by the
network. This approach makes it possible to use DNNs for scientific and engineering simulations where
high accuracy is expected at each and every step of the process.

We have also shown how a simulation-driven toolpath generation algorithm can be accelerated by
over an order of magnitude by narrowing the range of the angles explored using a DNN. Even with
these measures, there is still a possibility where the DNN predicts a wrong direction of movement but an
engagement value valid for the incorrectly predicted direction. The overall algorithm must be designed so
that it is possible to detect such worst-case problems. We, therefore, additionally perform gouge checks
and check for toolpath smoothness in regions where tool engagement is high and near constant.

Acknowledgement:
This research was conducted as part of the CAMWorks project. CAMWorks is a popular CAM soft-
ware used by small and mid-sized machining workshops worldwide. We want to thank everyone in the
CAMWorks team, past and present, who have made this research possible.

Tathagata Chakraborty, https://orcid.org/0000-0002-2752-2533
Christine Zuzart, https://orcid.org/0009-0005-3128-4418
Chinmaya Panda, https://orcid.org/0009-0004-6096-9582
Nitin Umap, https://orcid.org/0000-0002-9063-1230

References:
[1] Bai, Y.; Mei, S.; Wang, H.; Xiong, C.: Don’t just blame over-parametrization for over-confidence:

Theoretical analysis of calibration in binary classification, International Conference on Machine Learn-
ing, PMLR, 2021 Jul 1, 566-576.

[2] Chakraborty, T.; Panda, C.; Umap, N.: Simulation-Driven Computation of High-
Speed Pocket Machining Toolpaths, Computer-Aided Design, 21(1), 2024, 88-103.
https://doi.org/10.14733/cadaps.2024.88-103

[3] Gawlikowski, J.; Tassi, C.R.; Ali, M.; Lee, J.; Humt, M.; Feng, J.; Kruspe, A.; Triebel, R.; Jung,
P.; Roscher, R.; Shahzad, M.: A survey of uncertainty in deep neural networks, Artificial Intelligence
Review, 56(Suppl 1), 2023 Oct, 1513-89. https://doi.org/10.1007/s10462-023-10562-9

[4] Grabinski, J.; Gavrikov, P.; Keuper, J.; Keuper, M.: Robust Models are less Over-Confident, Advances
in Neural Information Processing Systems, 2022 Dec 6, 35:39059-75.

[5] Guo, C.; Pleiss, G.; Sun, Y.; Weinberger, K.Q.: On calibration of modern neural networks, Interna-
tional conference on machine learning, PMLR, 2017 Jul 17, 1321-1330.

Proceedings of CAD’24, Eger, Hungary, July 8-10, 2024, 6-12
© 2024 U-turn Press LLC, http://www.cad-conference.net

https://orcid.org/0000-0002-2752-2533
https://orcid.org/0009-0005-3128-4418
https://orcid.org/0009-0004-6096-9582
https://orcid.org/0000-0002-9063-1230
https://doi.org/10.14733/cadaps.2024.88-103
https://doi.org/10.1007/s10462-023-10562-9
http://www.cad-conference.net

12

[6] Hendrickx, K.; Perini, L.; Van der Plas, D.; Meert, W.; Davis, J.: Machine learning with a reject
option: A survey, arXiv preprint, arXiv:2107.11277, 2021 Jul 23.

[7] Ju, C.; Bibaut, A.; van der Laan, M.: The relative performance of ensemble methods with deep
convolutional neural networks for image classification, Journal of Applied Statistics, 45(15), 2018 Nov
18, 2800-18.

[8] Lakshminarayanan, B.; Pritzel, A.; Blundell, C.: Simple and scalable predictive uncertainty estima-
tion using deep ensembles, Advances in neural information processing systems, 30, 2017.

[9] Mandelbaum, A.; Weinshall, D.: Distance-based confidence score for neural network classifiers, arXiv
preprint, arXiv:1709.09844, 2017 Sep 28.

[10] Mendizabal, A.; Márquez-Neila, P.; Cotin, S.: Simulation of hyperelastic materi-
als in real-time using deep learning, Medical image analysis, 59:101569, 2020 Jan 1.
https://doi.org/10.1016/j.media.2019.101569

[11] Moseley, B.; Nissen-Meyer, T.; Markham, A.: Deep learning for fast simula-
tion of seismic waves in complex media, Solid Earth, 11(4), 2020 Aug 24, 1527-49.
https://doi.org/10.5194/se-11-1527-2020

[12] Obiols-Sales, O.; Vishnu, A.; Malaya, N.; Chandramowliswharan, A.: CFDNet: A deep learning-
based accelerator for fluid simulations, Proceedings of the 34th ACM international conference on
supercomputing, 2020 Jun 29, 1-12. https://doi.org/10.1145/3392717.3392772

[13] Pawar, S.; San, O.; Aksoylu, B.; Rasheed, A.; Kvamsdal, T.: Physics guided machine learning using
simplified theories, Physics of Fluids, 33(1), 2021 Jan 1. https://doi.org/10.1063/5.0038929

[14] Peivaste, I.; Siboni, N.H.; Alahyarizadeh, G.; Ghaderi, R.; Svendsen, B.; Raabe, D.; Mianroodi, J.R.:
Accelerating phase-field-based simulation via machine learning, arXiv preprint, arXiv:2205.02121,
2022 May 4.

[15] Raissi, M.; Perdikaris, P.; Karniadakis, G.E.: Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear par-
tial differential equations, Journal of Computational physics, 378, 2019 Feb 1, 686-707.
https://doi.org/10.1016/j.jcp.2018.10.045

[16] Vlachas, P.R.; Zavadlav, J.; Praprotnik, M.; Koumoutsakos, P.: Accelerated simulations of molecular
systems through learning of effective dynamics, Journal of Chemical Theory and Computation, 18(1),
2021 Dec 10, 538-49. https://doi.org/10.1021/acs.jctc.1c00809

[17] Zeng, Z.; Liang, N.; Yang, X.; Hoi, S.: Multi-target deep neural networks: Theoretical analysis and
implementation, Neurocomputing, 273, 2018 Jan 17, 634-42.

Proceedings of CAD’24, Eger, Hungary, July 8-10, 2024, 6-12
© 2024 U-turn Press LLC, http://www.cad-conference.net

https://doi.org/10.1016/j.media.2019.101569
https://doi.org/10.5194/se-11-1527-2020
https://doi.org/10.1145/3392717.3392772
https://doi.org/10.1063/5.0038929
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1021/acs.jctc.1c00809
http://www.cad-conference.net

