
334

Title:
Root�nding in Bernstein Basis

Authors:
Gábor Valasek, valasek@inf.elte.hu, Eötvös Loránd University, Budapest

Keywords:
Polynomial root�nding, Bernstein basis, Newton-Raphson, Bracketed Newton method

DOI: 10.14733/cadconfP.2024.334-338

Introduction:

A wide variety of operations have well-known formulae in terms of Bézier control data. For example,
succinct and convenient formulations are available for subdivision, degree elevation, and integration.
However, some basic identities, such as the quadratic formula, are less frequently found in the literature.
The purpose of this paper is to formulate solutions to root �nding in the Bernstein basis. We show that
the quadratic formula and the Vieta identities between the roots have straightforward expressions in the
Bernstein basis. Beyond that, we adapt Yuksel's [1] algorithm of robust root �nding to the Bernstein basis.
We show that a recursion-free formulation akin to that of Peters et al. [2] is viable which have similar
numerical characteristics as the original but is more suited for limited computational environments, such
as GPUs.

Quadratic formula and root identities in Bernstein basis:

Let us assume that we are given polynomials in the Bernstein basis. One may �nd its roots by converting
the Bézier control data to monomial coe�cients and apply the classic quadratic formula. However, basis
conversions incur extra computations and can amplify the error in coe�cients. To circumvent this, the
following theorem provides a direct quadratic formula for polynomials in the Bernstein basis.

Theorem 1. Let b(t) = (1 − t)2b0 + 2t(1 − t)b1 + t2b2, t ∈ [0, 1], denote a quadratic Bézier curve with

b0, b1, b2 ∈ R control scalars. Then the roots of the polynomial are

t1,2 =
−∆b0 ±

√
b21 − b0b2

∆2b0
, (2.1)

where ∆k+1bi = ∆kbi+1−∆kbi, i ∈ {0, . . . , n− k− 1} are the order k forward di�erences with ∆0bi = bi.
The Vieta formulae in Bernstein coordinates are expressed as

t1 + t2 = −2 ∆b0
∆2b0

(2.2)

t1 · t2 =
b0

∆2b0
. (2.3)

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 334-338
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

335

Proof. The algebraic solution to b(t) = 0 is derived by �rst converting the Bézier control data to monomial
basis coordinates symbolically, then applying the standard quadratic formula. The conversion yields

(1− t)2b0 + 2t(1− t)b1 + t2b2 = (b0 − 2b1 + b2)t
2 + (2t− 2t2)b1 + t2b2

= ∆2b0 · t2 + 2∆b0 · t+ b0 .

Thus, the quadratic formula in terms of Bézier controla data is written as

t1,2 =
−2∆b0 ±

√
(2∆b0)2 − 4 ·∆2b0 · b0
2 ·∆2b0

=
−∆b0 ±

√
(b1 − b0)2 − (b2 − 2b1 + b0) · b0

∆2b0

=
−∆b0 ±

√
b21 − 2b0b1 + b20 − (b2 − 2b1 + b0)b0

∆2b0

=
−∆b0 ±

√
b21 − b0b2

∆2b0
.

Similarly, the Vieta formulae follow from direct computation as

t1 + t2 =
−∆b0 +

√
b21 − b0b2

∆2b0
+
−∆b0 −

√
b21 − b0b2

∆2b0
= −2 ∆b0

∆2b0

and

t1 · t2 =
−∆b0 +

√
b21 − b0b2

∆2b0
· −∆b0 −

√
b21 − b0b2

∆2b0

=
b20 − 2b0b1 + b0b2

(∆2b0)2

=
b0 ·∆2b0
(∆2b0)2

=
b0

∆2b0
.

Compared to the monomial quadratic formula, the above does not have constant multipliers in the
discriminant and the denominator. Depending on the execution environment, this may translate into
fewer operations.

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 334-338
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

336

Algorithm 1 SolveQuadraticBernstein(b0, b1, b2)

1: ∆b0,∆b1 ← b1 − b0, b2 − b1
2: ∆2b0 ← ∆b1 −∆b0
3: if |∆2b0| ≈ 0 then ▷ Input is linear

4: return
(
− b0

2∆b0
, N/A

)
5: end if

6: D ← b21 − b0b2
7: if D ≥ 0 then

8: s← −
(
∆b0 + sign (∆b0) ·

√
D
)

▷ Stable root nominator

9: t1 ← s
∆2b0

10: t2 ← b0
∆2b0·t1

11: return (min{t1, t2},max{t1, t2}) ▷ Root ordering is optional in general, we rely on it later
12: else

13: return (N/A,N/A)
14: end if

In practice, a numerically stable solution has to address the potential cancellation of signi�cant digits
in the nominator when |∆b0| ≈

√
b21 − b0b2. A common approach [3] is to carry out the operation that

avoids an e�ective subtraction, that is, select addition if −∆b0 is non-negative and subtraction otherwise.
Once a numerically more robust root is identi�ed in such a way, one can apply the Vieta formulae to
compute the other root. These are summarized in Algorithm 1. N/A corresponds to non-existing or
non-real roots. The algorithm also handles the cases when the input is linear and when t = 0 is a root.

For a degree n polynomial, one has the generalized Vieta formulae

n∑
i=0

ri = −
an−1

an
,

n∏
i=0

ri = (−1)n a0
an

(2.4)

which can be adapted to the Bernstein basis over [0, 1] by using the identities [4]

ai =

(
n

i

)
∆ibi (2.5)

to obtain

n∑
i=0

ri = −
n∆n−1b0
∆nb0

,

n∏
i=0

ri = (−1)n b0
∆nb0

(2.6)

Higher degree polynomials:

Let us consider the general degree case. The i-th degree n Bernstein polynomial is denoted by Bn
i (t) =(

n
i

)
ti(1 − t)n−i. Let us express the solutions to b(t) =

∑b
i=0 B

n
i (t)bi = 0 in terms of the bi ∈ R control

data scalars. Closed-form expressions are not available above degree 4. However, even degrees 3 and 4
are often easier to handle numerically with iterative methods.

For degree n polynomials in the monomial basis, Yuksel proposed a bracketed Newton method in
[1] that falls back to bisection if an unsafe step is inferred during the Newton phase. The brackets,
i.e. subintervals, are determined such that the function is monotone over each. The endpoints of these
subintervals are the zeros of the derivative of the input polynomial. These, in turn, are identi�ed by

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 334-338
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

337

�nding the roots of the derivative of the input, i.e. a degree n − 1 polynomial. This yields a recursive
algorithm until a degree is reached where an explicit root formula is known, for example a quadratic.
Despite the simplicity of this approach, our goal is to implement the solution on the GPU that does not
support recursion natively. As such, we followed a similar approach as shown by Peters et al. in [2] that
transforms the recursion into an iteration.

First, we compute the roots of the (n−2)-th derivative of the input, which is a quadratic polynomial.
The roots are the endpoints of the brackets for the (n− 3)-th derivative, yielding up to 2 intervals. The
subtlety of implementation lies in avoiding storage requirements that would be Θ(n2). This can be done
by noting that by successive integration and proper handling of integration constants, we can reconstruct
the the original polynomial.

Our Bernstein-based modi�cation is summarized in Algorithm 2. It discards constant multipliers of
the derivatives, as we only need to identify roots that are invariant under scaling. This also keeps compu-
tations within the bounds of the initial control data and does not in�ate. The bracketed NewtonBisection
method follows [1, 2] adapted to the Bernstein basis. This means that if the Newton step leaves the input
[ri, ri+1] bracket, it falls back to bisection.

Algorithm 2 FindRootsBernstein({bi}ni=0, [a, b] ⊂ R, ϵ > 0)

1: ▷ Compute the scaled Bézier control date of the derivatives
2: {di}ni=0 ← {bi}ni=0 ▷ Coe�cients of the derivatives
3: {ri}ni=0 ← a ▷ Roots that also correspond to bracket endpoints for derivatives
4: for k = 1, . . . , n− 2 do ▷ Compute the control data of the scaled derivative that is a quadratic
5: for i = 0, . . . , n− k do

6: di ← di+1 − di ▷ Discard the degree multiplier in the derivative for numerical robustness
7: end for

8: end for

9: ▷ Find the roots of the quadratic derivative and initialize the �rst brackets
10: t1, t2 ← SolveQuadraticBernstein(d0, d1, d2)
11: rn−2 ← t1 if t1 ̸= N/A else a
12: rn−1 ← t2 if t2 ̸= N/A else a
13: rn ← b
14: ▷ Iterate from the n− 3-th derivative up to the input polynomial
15: for k = 3, . . . , n do ▷ The degree of the polynomial we compute in the loop body is k
16: for i = k − 1, . . . , 0 do ▷ Decreasing loop
17: di ← di+1 − di ▷ Integrate coe�cients, discard scale
18: end for

19: beginV alue← d0 ▷ Evaluate the derivative at a
20: ▷ Process brackets [ri, ri+1] and compute the root in each
21: for i = 0, . . . , n− k − 1 do
22: r ← NewtonBisection({ri}ni=0, {di}ni=0, [ri, ri+1], beginV alue, b− a, ϵ) if converged else ri−1

23: end for

24: end for

25: rn ← N/A

Conclusions:

We derived a stable quadratic formula for polynomials supplied in the Bernstein basis. For higher
degree polynomials, we adapted Yuksel's bracketed Newton method for the computation of the real roots

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 334-338
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

338

Fig. 1: Rendering a modi�ed Barth Sextic. The composition of the parametric ray and the implicit
function was written in the Bernstein basis as a degree six polynomial. Di�erence between render times
was statistically insigni�cant, despite the fact that the Bernstein polynomials were evaluated with the
quadratic-time de Casteljau algorithm while the monomial polynomial relied on linear-time Horner.

of polynomials, following Peters et al.'s GPU implementation considerations. The monomial and our
proposed Bernstein methods provide similar performance characteristics but we can rely on a numerically
more stable evaluation for function and derivative values via the de Casteljau algorithm, as well as employ
trivial empty space skipping by considering whether the bounding interval of the control points contains
0. The method was tested on scenes such as shown in Fig. 1. The main application of our formulation
is when the input polynomials are already given in the Bernstein basis, which allows user to bypass
conversion from Bernstein to monomial basis. Future research is required to investigate if linear time
Bézier evaluation algorithms can provide improved performance.

Gábor Valasek, https://orcid.org/0000-0002-0007-8647

References:

[1] Yuksel, C.: High-Performance Polynomial Root Finding for Graphics. Proc. ACM Comput. Graph.

Interact. Tech.. 5 (2022,7), https://doi.org/10.1145/3543865

[2] Peters, C.; Patel, T.; Usher, W.; Johnson, C.: Ray Tracing Spherical Harmonics Glyphs. Vision,
Modeling, And Visualization. (2023) https://doi.org/10.2312/vmv.20231223

[3] Press, W.; Teukolsky, S.; Vetterling, W.; Flannery, B.: Numerical Recipes 3rd Edition: The Art of Sci-
enti�c Computing. (Cambridge University Press,2007) https://dl.acm.org/doi/10.5555/1403886

[4] Barrio, R.; Peña, J.: Basis conversions among univariate polynomial representations. Comptes Rendus.

Mathematique. 339, 293-298 (2004) https://doi.org/10.1016/j.crma.2004.06.017

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 334-338
© 2024 U-turn Press LLC, http://www.cad-conference.net

https://orcid.org/0000-0002-0007-8647
https://doi.org/10.1145/3543865
https://doi.org/10.2312/vmv.20231223
https://dl.acm.org/doi/10.5555/1403886
https://doi.org/10.1016/j.crma.2004.06.017
http://www.cad-conference.net

