
295

Title:
Faster than Fast: E�cient Approximate Boolean Operations on Dense Triangular Mesh

Models

Authors:
Yuanhui Xiao, xiao20231115@163.com, Guangxi Normal University
Ming Chen, hustcm@hotmail.com, Guangxi Normal University
Shouxin Chen, chen.csx@outlook.com, Guangxi Normal University
Shenglian Lu, lsl@gxnu.edu.cn, Guangxi Normal University

Keywords:
Boolean operation, ray tracing, intersection calculation, collision detection, Optix engine.

DOI: 10.14733/cadconfP.2024.295-300

Introduction:

As a fundamental algorithm of three-dimensional (3D) modelling, 3D Boolean operations are utilized ex-
tensively in computer-aided design (CAD)/computer-aided manufacturing (CAM), virtual reality, com-
puter vision, robotics, and other �elds. In recent years, with the improvement of industrial manufacturing
precision and the development of 3D printing technology, the size of meshes that need to be processed
has dramatically increased, posing a challenge to the speed of Boolean operations.

Unlike tree [14, 6, 5] and volumetric representation [16, 15, 10, 8] methods that are designed specif-
ically for parallel computation, OptiX [13], NVIDIA's latest RTX ray tracing engine, performs e�cient
massively parallel ray intersection testing and creates acceleration structures based on the bounding vol-
ume hierarchy (BVH) [7] tree. In this paper, the two steps of calculating the triangle-triangle intersection
and inside/outside classi�cation are recast as the problem of ray and triangle intersection. These two
steps are accelerated by the Optix engine, thereby accelerating the entire Boolean operation.

The proposed method requires the input triangular meshes to be closed, orientable, nonself-intersecting
and nondegenerate 2-manifolds. Preprocessing is necessary if the aforementioned conditions are not
satis�ed. This paper's method consists of three main steps (see Fig. 1):

Step 1: Intersection test and intersection calculation (see Fig. 1(b)). Rays were emitted along each side
of the triangle, intersection tests were conducted with another model involving Boolean operations, and
the intersections were calculated. the intersection points are calculated using Eq. (2.1) and degenerate
cases are handled.

Step 2: Triangle tessellation (see Fig. 1 (c)). Using the constrained Delaunay triangulation (CDT)
algorithm [4], the intersection points in each intersecting triangle were connected to constrained line
segments as input, and the intersecting triangles were triangulated. Each intersecting triangle was sub-
divided into multiple subtriangles following segmentation. This step is accelerated in parallel using the
OpenMP [3] policy and runs on the CPU.

Step 3: Inside/outside classi�cation (see Fig. 1 (d)). After triangle tessellation, there are no triangles
that are both inside and outside the target model; all triangles are either inside or outside. Then, retain
the triangles in accordance with the rules of boolean operations to obtain the �nal result of boolean
operations.(see Fig. 1 (e)).

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 295-300
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

296

The main contributions of this paper are as follows:
(1) Triangle-triangle intersection detection was transformed into a triangle-ray intersection problem.

Using ray tracing, the intersection region and intersection points of the model were determined.
(2) In this paper, the model's topological information was completely disregarded for triangle in-

side/outside classi�cation. Ray tracing technology was extensively utilized to classify each triangle as
belonging to the inside/outside.

(a) (b) (c)

(d) (e)

Fig. 1: Boolean operation procedure of triangular mesh based on ray tracing. (a) Input two closed,
nonself-intersecting 2-manifold models. (b) Use ray tracing to perform the intersection test and compute
the intersection points; the red portion of the diagram represents the set of intersecting triangles. (c)
Use the CDT algorithm to triangulate the intersecting triangle. (d) Use ray tracing to complete the
inside/outside classi�cation; the red portion of the �gure is determined to be inside another model. (e)
According to Boolean operation rules, the dragon-bunny result is obtained.

Intersection Computation:

A method similar to the Moller-Trumbore algorithm [12] is used to calculate the intersection points: a
triangle is de�ned by three vertices V0, V1 and V2, and a point T(u, v) on a triangle is given by

T (u, v) = (1− u− v)V0 + uV1 + vV2 (2.1)

where (u, v) are the barycentric coordinates, which must ful�l u ≥ 0, v ≥ 0 and u+v ≤ 1.
{Mi}i∈{1,2} = (Vj , Tj) denotes the meshes engaged in Boolean operations, where Vi is the set of

vertices and Ti is the set of triangles. Mi is a closed, orientable, nonself-intersecting and nondegenerate
2-manifold. When Mi is input, the topological connection information of its points, edges, and faces is
constructed by traversal. This paper transforms the triangle intersection test between M1 and M2 into
a ray and triangle intersection test by emitting rays along each edge of Ti. As shown in Fig. 2, a ray
(yellow arrow) is emitted along each edge of the triangle. Using the emission ray R1 along edge V1V2 of
triangle T1 as an illustration, the parameters are constructed as follows:

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 295-300
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

297

1. Set vertex V1 as the origin O of the ray.

2. Set the normalized direction of vector V1V2 as the ray direction D.

3. Set tmin = 0, tmax = |V1V2|, and |V1V2| as the distance between V1 vertices V2.

In the Optix ray tracing engine, the any hit program is invoked when the acceleration traversal �nds
that a ray intersects a primitive (triangle). In the any hit program, the barycentre coordinates (u,v) of
the intersection point and the index of the intersect triangle can be obtained by invoking the API; the
intersection point Pi is then computed using Eq. (2.1).The set Ei stores the index IDs of the two adjacent
triangles that the ray shares, and the set Hi stores the index ID of the triangle that the ray hits. The
relationship between the two pieces of information and the intersection Pi is recorded as {Ei,Hi,Pi} and
utilized in the next step of triangle tessellation.

Fig. 2: Rays are emitted along the edges of Mi, and ray tracing is performed to complete the intersection
test and calculation.

Due to the accumulation of numerical errors in the single-precision focal-point calculations of the Op-
tiX engine, In two triangles intersecting at a point or edge and in coplanar triangle cases, the intersection
points cannot be obtained stably.We use numerical perturbations to improve both cases.

Triangle Tessellation:

Before using the CDT algorithm to conduct triangulation of intersecting triangles, we need to connect
the intersection points as constraint segments. Comparing the ID sets Ei of the emitting ray triangle
index and Hi of the intersecting triangle index connects the two intersection points. Assume the two
points P = {Ei,Hi,Pi} and Q = {E

′

i ,H
′

i ,Q
′

i}, where Pi and Q
′

i are the coordinates of the two points. ∃
T0 ∈ Ei, ∃ T1 ∈ Hi, ∃ T

′

0 ∈ E
′

i and ∃ T
′

1 ∈ H
′

i . When the following two conditions are satis�ed by the

four triangle indices T0, T1, T
′

0 and T
′

1, the points P and Q are joined as a constrained line segment.

1. If T0 = T
′

0 and T1 = T
′

1, then connect points P and Q. As shown in Fig. 3 (a), P1P2 is a constrained
line segment.

2. If T0 = T
′

1 and T1 = T
′

0, then connect points P and Q. As shown in Fig. 3 (b), P1P2 is a constrained
line segment.

The triangle is triangulated using the CDT algorithm in the third-party library Fade2D [11] in 2D.

Inside/Outside Classi�cation:

After triangle tessellation, each triangle is either completely inside or completely outside of the model.
We utilize the high e�ciency of OptiX intersection judgment and adopt a simple method to complete
inside/outside classi�cation: A ray is emitted from the centre of gravity G of each triangle towards the
centre C of the model, and then the inside or outside the triangle is determined by the sign of cos θ,

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 295-300
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

298

(a) (b)

Fig. 3: The two most common triangle-triangle intersection cases. The triangles T
′
and T belong to

two input models. (a) The rays R
′

1
and R

′

3
emitted from T

′
intersect triangle T at points P1 and P2,

respectively. (b) The ray R
′

1
emitted from triangle T

′
and the ray R3 emitted from triangle T intersect

at points P1 and P2, respectively.

where θ is the angle between the direction vector D of the ray and the normal vector n of the nearest
intersecting triangle (see Fig. 4). As ray tracing is performed very quickly on the GPU, the entire
procedure is completed in a short amount of time.

Fig. 4: M1 and M2 represent two models. The normal vectors (yellow arrows) of triangles in model
M2 are directed outwards, and C1 is the centre of model M2. The ray emitted by the triangle of the
barycentre G1 intersects M2 at point P1, and cos θ1 < 0, so the triangle is judged to be outside M2. The
ray emitted by the triangle of the barycentre G2 intersects M2 at point P2, and cos θ2 > 0, so the triangle
is judged to be inside M2.

Results and Discussion:

Three examples were used to compare the proposed algorithm with CGAL Nef Polyhedra [2], CGAL
Core�ne [2], Cork [1], QuickCSG [5], and Zhou's method [17] in LibIGL [9]. The number of input
triangles ranges from approximately 10k to 1.6 M, and the models come from the Thingi10K dataset.
The running results of the union, intersection and di�erence sets of the six experiments are shown in
Table 1 and Fig. 5. Table 1 demonstrates that the proposed methods are quicker than all other methods
except for Example 1. Example 1 demonstrates that when the number of triangles in the input model is
approximately 10k, the operating time of the proposed method is comparable to that of the QuickCSG
method. The reason for this is that when the number of input triangles is minimal, the proposed method

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 295-300
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

299

(a) (b)

(c) (d)

(e) (f)

Fig. 5: The outputs of the six examples in Table 1 are the union, intersection, and di�erence sets. The
model is from the Thingi10K Dataset. (a), (c) and (e)are the outputs of the proposed method. (b), (d)
and (f) are the outputs of Zhou's method in LibIGL.

requires a signi�cant amount of time to construct a ray tracing pipeline, resulting in a slower overall time
than QuickCSG. In the remaining examples, the method is faster than QuickCSG. This is because the
proposed method utilizes the GPU to perform intersection computations and face classi�cation, which
signi�cantly accelerates these two steps. As the number of input triangles increases, the advantages
become increasingly apparent.

Table 1: Computation time statistics (seconds) .

Example Model∗ Face Num
Intersect
Face Num

Ours QuickCSG LibIGL Cork CGAL Nef
CGAL
Core

1 74890 ∪ 104738 15k 0.4K 0.02 0.02 3.51 1.10 26.15 1.18
2 57937 ∪ 441711 147k 2K 0.05 0.22 131.8 9.23 571.6 18.23
3 461112 ∪ 461115 1.6M 29.1K 0.25 2.81 368.46 90.40 - 118.7

- The process is terminated after running for a long time.
∗ A1 ∪ A2, A1 and A2 are the numbers of the models in the Thingi10K dataset.

Acknowledgement:

This research is funded by the funding of Natural Science Foundation of China (No: 61662006).

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 295-300
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

300

References:

[1] Gilbert Bernstein. Cork boolean library, https://github. com/gilbo/cork. 2013.

[2] CE Board. Cgal, computational geometry algorithms library, http://www.cgal.org.

[3] Rohit Chandra. Parallel programming in OpenMP. Morgan kaufmann, 2001.

[4] L Paul Chew. Constrained delaunay triangulations. In Proceedings of the third annual symposium on
Computational geometry, pages 215�222, 1987.

[5] Matthijs Douze, Jean-Sébastien Franco, and Bruno Ra�n. Quickcsg: Fast arbi-
trary boolean combinations of n solids. arXiv preprint arXiv:1706.01558, 2017.
https://doi.org/10.48550/arXiv.1706.01558

[6] Francisco R Feito, Carlos J Ogáyar, Rafael Jesús Segura, and ML Rivero. Fast and accurate evaluation
of regularized boolean operations on triangulated solids. Computer-Aided Design, 45(3):705�716, 2013.
https://doi.org/10.1016/j.cad.2012.11.004

[7] Johannes Gunther, Stefan Popov, Hans-Peter Seidel, and Philipp Slusallek. Realtime ray tracing on
gpu with bvh-based packet traversal. In 2007 IEEE Symposium on Interactive Ray Tracing, pages
113�118. IEEE, 2007. https://doi.org/10.1109/RT.2007.4342598

[8] Bruno Heidelberger, Matthias Teschner, and Markus H Gross. Volumetric collision detection for
derformable objects. CS technical report, 395, 2003. https://doi.org/10.3929/ethz-a-006665865

[9] Alec Jacobson, Daniele Panozzo, C Schüller, Olga Diamanti, Qingnan Zhou, N Pietroni, et al. libigl:
A simple c++ geometry processing library. Google Scholar, 2013.

[10] Mark W Jones, J Andreas Baerentzen, and Milos Sramek. 3d distance �elds: A survey of techniques
and applications. IEEE Transactions on visualization and Computer Graphics, 12(4):581�599, 2006.
https://doi:10.1109/TVCG.2006.56

[11] B Kornberger. C++ constrained delaunay triangulation fade2d,
https://www.geom.at/fade2d/html/index.html.

[12] T Möller and B Trumbore. Fast, minimum storage ray-triangle intersection. j graph tools; 2 (1):
21�8, 1997. https://doi.org/10.1080/10867651.1997.10487468

[13] Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David
Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison, et al. Optix:
a general purpose ray tracing engine. Acm transactions on graphics (tog), 29(4):1�13, 2010.
https://doi.org/10.1145/1778765.1778803

[14] Bin Sheng, Ping Li, Hongbo Fu, Lizhuang Ma, and Enhua Wu. E�cient non-incremental
constructive solid geometry evaluation for triangular meshes. Graphical Models, 97:1�16, 2018.
https://doi.org/10.1016/j.gmod.2018.03.001

[15] Charlie CL Wang. Approximate boolean operations on large polyhedral solids with partial mesh
reconstruction. IEEE transactions on visualization and computer graphics, 17(6):836�849, 2010.
https://doi:10.1109/TVCG.2010.106

[16] Hanli Zhao, Charlie CL Wang, Yong Chen, and Xiaogang Jin. Parallel and ef-
�cient boolean on polygonal solids. The Visual Computer, 27:507�517, 2011.
https://doi.org/10.1007/s00371-011-0571-1

[17] Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. Mesh arrange-
ments for solid geometry. ACM Transactions on Graphics (TOG), 35(4):1�15, 2016.
https://doi.org/10.1145/2897824.2925901

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 295-300
© 2024 U-turn Press LLC, http://www.cad-conference.net

https://doi.org/10.48550/arXiv.1706.01558
https://doi.org/10.1016/j.cad.2012.11.004
https://doi.org/10.1109/RT.2007.4342598
https://doi.org/10.3929/ethz-a-006665865
https://doi:10.1109/TVCG.2006.56
https://doi.org/10.1080/10867651.1997.10487468
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1016/j.gmod.2018.03.001
https://doi: 10.1109/TVCG.2010.106
https://doi.org/10.1007/s00371-011-0571-1
https://doi.org/10.1145/2897824.2925901
http://www.cad-conference.net

