
227

Title:
Lost in Translation: Evaluating the Robustness of a Data Format and its Read/Write
Machinery

Authors:
John K. Johnstone, jkj@uab.edu, Computer Science and Ophthalmology, UAB

Keywords:
CAD dataset, Data management, Data format, Reader, Writer, Veri�cation, Optic nerve head dataset.

DOI: 10.14733/cadconfP.2024.227-231

Introduction:

This abstract considers mechanisms to evaluate the correctness of a new data format for data storage
and its read-write machinery, as well as to guarantee the preservation of information content when
translating between two data formats. This issue has increasing importance in today's world of large
datasets, where the corruption of data has large consequences for computation. Formal mechanisms for
data management and provenance are also increasingly being emphasized by the NIH and NSF [2, 3],
illustrating the importance of this issue. The focus is on CAD datasets such as polygon meshes and
point clouds, but the mechanisms generalize to other datasets. A major purpose of the abstract is
straightforward: to highlight the issue of robustness and veri�cation of data and, in the full paper, to
consider a case study of the use of these tests in the development of a new data format and its read/write
machinery, and the incorporation of these tests into the software lifecycle.

These issues were highlighted for us recently in developing a new data format for optic nerve head
point clouds in a biomedical context (ophthalmology), where there are high expectations for the sanctity
and provenance of the underlying data and where the datasets are large and complex.

Consider the storage of data in a certain data format and its read/write machinery. Data is stored
externally in a data �le using a data format, and it is stored internally, in code, in a data structure. This
symbiotic relationship between the internal and external representations is subtle, yet the preservation
of information content in the data is obviously crucial as it is translated between internal and external
representations, and between di�erent data formats. There are many moving parts that must be coor-
dinated here: the data format, the internal data structure, the reader, the writer, and any translators
between di�erent data formats. This issue becomes most tangible when developing and introducing a
new data format: can the data structure be restored from the new data format? will the information
content of the data stored in previous formats be preserved when translated to the new format?

The sanctity of data, and the importance of preserving its information content as it is massaged into
di�erent forms, demands that this issue be treated more deliberately and more formally. We introduce
several tests that can be applied to guarantee that no information is lost in translating between internal
and external representations of data, and between di�erent external representations of data.

As a concrete example, consider the triangle mesh as the dataset of interest. There are many internal
representations of a triangle mesh (e.g., halfedge, winged edge, list of vertices/faces) and there are many
external representations of a triangle mesh (e.g., PLY, OBJ, OFF formats [7, 8, 9]). Choose one of the

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 227-231
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net


228

internal representations of a triangle mesh (say, halfedge) and let I be the universe of valid internal
half-edge representations of all triangle meshes. Choose one of the external representations of a triangle
mesh (say, PLY) and let E be the universe of valid external PLY representations of all triangle meshes.
A (PLY, halfedge) writer w : I → E is code whose input is a halfedge internal representation of a triangle
mesh and whose output is a PLY external representation for a triangle mesh. A (PLY, halfedge) reader
r : E → I is code whose input is a PLY external representation �le for a triangle mesh and whose output
is a halfedge internal representation of a triangle mesh. Note that there are three hyper-parameters to a
reader/writer: the structure of interest (in this case, triangle mesh), the external representation of this
structure (PLY), and the internal representation of this structure (half-edge). We are interested in the
correctness of the translation from internal to external representation and back.

We are also interested in the correctness of the translation between external representations in two
di�erent data formats. This adds a fourth hyper-parameter: the second external representation of this
structure (e.g., OBJ). Choose a second external representation of a triangle mesh (OBJ) and let E2

be the universe of valid external OBJ representations of all triangle meshes. A (PLY, OBJ) translator
t : E → E2 is code whose input is a PLY �le for a triangle mesh and whose output is an OBJ �le for
the same triangle mesh. A (OBJ, PLY) translator t2 : E2 → E is code whose input is an OBJ �le for
a triangle mesh and whose output is a PLY �le for the same triangle mesh. We also want to test the
integrity of these translators.

The rest of the abstract is structured as follows. We �rst discuss internal tests, which focus on the
preservation of data in its internal form. We then discuss external tests, which focus on the preservation
of data in its external form. We conclude with translation tests, which focus on data preservation while
translating between two di�erent data formats.

Internal test:

An internal test is a fundamental test of a data format and its read/write machinery, since it re�ects a
fundamental purpose of a data �le: as a temporary repository for the internal data structure. An external
data �le allows a computation to be restarted after a temporal break; an external data �le also allows the
underlying structure to be communicated to another processor so that it can continue the computation.
So the �le format records a snapshot of the meaningful elements of the data structure, allowing i at
time/place t/p to be restored as i at time/place t+delta/p or time/place t+delta/q. The basic question
that must be answered in the a�rmative is: if you store a data structure x for a while in a data �le f ,
can you restore x from f?

De�nition 1
Consider a dataset of interest (e.g., a polygon mesh or a point cloud).
Fix an internal data structure for this dataset (e.g., half-edge representation of a mesh).
Fix a data format for this dataset (e.g., OBJ representation of a mesh).
Let w be a writer, which translates an internal data structure to a data �le in the data format.
Let r be a reader, which translates a data �le in the data format to an internal data structure.
The data format's IO machinery passes the internal test on internal data x if

r(w(x)) = x

The internal test works on an object x in the internal data structure. There are at least three sources
for x. Most purely, x may be built directly in the code, using some algorithm to build x. For example,
using a graph-cut algorithm [5] to segment an image to generate a point cloud x, if the dataset of interest
is a point cloud; or using Poisson reconstruction [1] of a point cloud to generate a triangle mesh x, if the
dataset of interest is a triangle mesh; or using a cubic �tting algorithm [4] to generate a B-spline curve
from a point cloud, if the dataset of interest is a B-spline curve.

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 227-231
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net


229

x may also be built randomly with the correct structure. This is a good way to stress-test the
reader/writer/format/structure quartet, since randomness helps to expose weakness.

Another simple way to build x is by reading a �le f : x = r(f).
Finally, note that there is an equality test at the heart of the internal test. However, when the

components of the internal data are �oating point, only approximate equality is expected, given �nite
precision.

External test:

An internal test is possible after creating an instance of the internal data structure. Therefore, it is
natural to apply as one writes the structure out to a data �le, to guarantee that the write is robust. But
if you instead start with a data �le, a di�erent test may be more natural. The external test is symmetric
to the internal test, starting from the external data �le rather than from the internal data structure.
It tests whether you can read a data �le and then later restore the same data �le by writing. Since
whitespace di�erences in plain-text data �les are irrelevant, the external test ignores these di�erences.

De�nition 2
Consider a dataset of interest.
Fix an internal data structure for this dataset.
Fix a data format for this dataset.
Let w be a writer, which translates an internal data structure to a data �le in the data format.
Let r be a reader, which translates a data �le in the data format to an internal data structure.
Let squish be a function that strips extra whitespace from each line of a �le.
The data format's IO machinery passes the external test on binary data �le f if

w(r(f)) = f

The data format's IO machinery passes the external test on plain-text data �le f if

squish(w(r(f))) = squish(f)

Translation test:

Internal and external tests measure the robustness of the read/write machinery of a single format. Trans-
lation tests measure the robustness of a new format, by measuring its robustness in preserving the
information in an existing format.

It might seem that the robustness of the translation between two formats is implied by the robustness
of the read/write machinery of each format. After all, if you can read format 1 robustly into the internal
data structure, and write format 2 robustly from the internal data structure, this seems to imply that you
can translate from format 1 to format 2, using this reader/writer pair. Similarly the dual reader/writer
pair (reading format 2 and writing format 1) would seem to establish the robustness of translation from
format 2 to format 1.

The subtlety is that one format may contain more information than another, and this is often the
case. For example, both PLY [6, 7] and OBJ formats [8] for polygon meshes o�er the opportunity for
much more information to be stored about a mesh than the OFF format [9]. The OFF format focuses on
edges, faces, and optionally edges, while the OBJ and PLY formats also allow colour, texture, and other
information to be encoded. This is also the case with the new format for optic nerve head point clouds
that we are developing: it records only a subset of the data in an earlier format, because some of this
original data has become vestigial and is no longer used in morphometric algorithms.

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 227-231
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net


230

This poses a di�erent robustness issue than the original reader/writer pair robustness measured by
internal and external tests. Now one is interested in whether the subset of common information is
preserved. In the PLY/OFF case, this would be the preservation of vertex/face/edge information.

De�nition 3
Let F and G be two data formats for encoding the same dataset X .1

Let X be the universe of datasets that are representable in both formats.2

Let F1 be the universe of valid representations of X in the �rst format F .
Let F2 be the universe of valid representations of X in the second format G.
Let toy : F1 → F2 be a translator of a data �le in format F to the equivalent data �le in format G.
Let tox : F2 → F1 be a translator from format G to F .
Let squish be a function that strips extra whitespace from each line of a �le.
The data formats' translation machinery passes the translation test on the pair of �les f1/f2 of the
same dataset if:

squish(tox(toy(f1))) = squish(f1)

and
squish(toy(tox(f2)) = squish(f2)

This translation test should be applied as each dataset is translated from one format to another. We
note that consideration of the translation issue, as formalized in translation tests, also pushes the designer
of a data format to consider the coverage of a data format more thoughtfully, since the gaps become more
visible in identifying the universe of datasets representable both in the new format and earlier formats.

Case study:

The next issue to consider is the implementation of the internal/external/translation tests and the design
of readers, writers, translators, and data formats that are conducive to passing these tests. This will
be addressed in the full paper. As a case study, the internal, external, and translation tests have been
implemented for a structure in optic nerve head morphometry: the ONH dataset, using a new data format
developed recently. The full paper will include more details on this case study, and its insights into the
implementation of the veri�cation tests.

Conclusions:

The main contribution of this abstract is a deliberate focus on the issue of robust testing of reader/writer
pairs for a data format, and on robust testing of translators between data formats. Once this focus is
applied deliberately and carefully, the path to these tests is natural, and can be applied universally in
these environments.

We suggest adding the option to incorporate internal/external tests during the reading/writing of
a dataset, as a conservative step to guarantee that no information is lost. It is also natural to add
translation tests during translation of datasets between formats.

Future work includes adoption and application of these tests in a wider spectrum of applications. In
particular, we are interested in parametric curve datasets and formats, where there is little work.

References:
[1] Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson Surface Reconstruction. Eurographics Symposium on

Geometry Processing 2006.

1For example, F and G might be PLY and OFF formats for storing a mesh.
2For example, X might be polygon meshes that only contain pure geometric information about the vertex/edge/face of

the mesh, without extra information such as texture coordinates or colours, so that all the information about the mesh in
the PLY �le is also representable in OFF format.

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 227-231
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net


231

[2] 2023 NIH Data Management and Sharing Policy:
https://grants.nih.gov/grants/guide/notice-�les/NOT-OD-21-013.html

[3] NSF data management and sharing requirements:
https://new.nsf.gov/policies/pappg/23-1/ch-11-other-post-award-requirements#11D4

[4] Piegl, L., Tiller, W.: The NURBS Book. Springer, 1997. http://dx.doi.org/10.1007/978-3-642-59223-2

[5] Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22:8, 2000, 888-905. http://dx.doi.org/10.1109/34.868688

[6] The Stanford 3D Scanning Repository: https://graphics.stanford.edu/data/3Dscanrep

[7] Turk, G.: The PLY Polygon File Format.
Archived at https://gamma.cs.unc.edu/POWERPLANT/papers/ply.pdf.

[8] Wavefront OBJ format: https://en.wikipedia.org/wiki/Wavefront_.obj_�le

[9] OFF format. https://en.wikipedia.org/wiki/OFF_(�le_format)

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 227-231
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

