222

e T
c‘h erepe

and Exhibition

Title:
Geomatplot: Interactive Geometric Plotting Library

Authors:
Csaba Balint, csabix@inf.elte.hu, E6tvis Lorand University
Robert Ban, rob.ban@inf.elte.hu, E6tvos Lordnd University

Keywords:
Data Visualization, Interactive Rendering

DOLI: 10.14733/cadconfP.2024.222-226

fe)
—
Hh
B

Clear figure

A = Point([.9 .91); /4 Draggable points with automatic 2 .i
B = Point([.5 .2]); A labels starting from ’4° SN 4
1 = Line(A,B,’k:?,2); X Line between 4 and B \ ¢

b0 = Point(’b0’,[.1 .2]1); / Labeled control points f:

bl = Point(’b1’,[.7 .91); ‘

b2 = Point(’b2’,[.9 .21);

Segment (bO,bl,’r--?); / Segments b0bl and b1b2 with a
Segment (bl,b2,’r--7); 7 short line specification

fun = @(t,b0,bl1,b2) bO.*(1-t) .72 + 2%bl.*t . *x(1-t) + b2.%t."~2;
bt = Curve(bO,bl,b2,fun,’g’,3); [/ 6Green quadratic Bezier curwve
Intersect(’I?,1,bt); / Intersection of a curve and a line

(a) Functions starting with a capital letter belong to Geomatplot. (b) Interactive plot

Fig. 1: A simple MatLab example code and the interactive output plot. Callbacks for the moveable points
are created automatically to update the dependent geometries when points are dragged.

Introduction:

Our research in computer graphics and computational geometry frequently necessitated creating various
geometric plots for both validation and publication purposes. Our figures and prototypes were created
either in Geogebra [1], MatLab [2], or Shadertoy [3] depending on the specific application, however, we
found that all such tools are severely lacking in functionality for our use cases. For example, while the
interactive aspect of Geogebra is great for figures and formula validation, entering complex formulae,
such as curves in various bases, is extremely cumbersome, and hard to edit as there is no global script
defining the geometry. Since Geogebra moved to HTML5 and the classic Java implementation supporting
Geogebra scripts has been discontinued, the need for a novel, general approach has risen. Moreover,
because Geogebra mostly operates with symbolic expressions, certain applets can become unnecessarily
slow or unresponsive.

Proceedings of CAD’24, Eger, Hungary, July 8-10, 2024, 222-226
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

223

(N

Add Vertex
Delete Polygon

-1.5 -1 -0.5 o 0.5 1

(a) Constructing the Euler line of a triangle (b) Sphere tracing an interactive polygon

Fig. 2: The three blue vertices of the triangle, the py and ¢y points of the red ray, and all the points of
the polygon are draggable resulting in a constantly updating plot.

On the other hand, plotting in MatLab or Python can be integrated with existing code allowing for
more options, but creating interactive Geogebra-like plots for testing or demonstration requires a great
deal of boilerplate coding. Thus, we decided to make our plotting library and engine with the following
goals in mind:

1. Easy creation of 2D geometric plots for publication
2. Prototyping computational geometry formulas and algorithms for research
3. Interactive testing of geometric functions by injecting code

These goals require a powerful scripting language with good performance and we opted for MatLab
adopting the following design principles to create Geomatplot':

1. Interactive, responsive plots with draggable objects
2. Must be easy to use through scripting with powerful functions
3. Efficient numerical algorithms for fast rendering

4. Allow user-defined callback functions to inject arbitrary algorithms

Usage examples:
Figure 1 showcases an example script with the resulting interactive plot. The black dotted line, the red
dashed segments, the green curve, and the black intersection point labeled I will update their position
when the blue movable points are dragged. Geomatplot builds an internal dependency graph as the
commands are executed on Fig. 1la where each object is either movable or dependent. For example,
A=Point(); B=Point(); creates two movable points, and Line(4,B) connects these with a line that depends
on 4 and B.

The curve command draws a parametric curve that may depend on any number of input geometries,
but the user must supply a callback function that takes the ¢ € [0,1] parameter and all dependent

LGeomatplot available at https://github.com/Csabix/Geomatplot.

Proceedings of CAD’24, Eger, Hungary, July 8-10, 2024, 222-226
© 2024 U-turn Press LLC, http://www.cad-conference.net

https://github.com/Csabix/Geomatplot
http://www.cad-conference.net

224

(a) Geometry-dependent R —R function (b) Delaunay triangulation and Voronoi cells

Fig. 3: The curve and the tmage function plots a user defined [0,1] — R? curve and R? — R image with
given dependent input Geomatplot geometries. The customvalue function creates an arbitrary dependent
composite object such as a Delaunay triangulation, which then can be used for further plotting.

geometries as arguments. For example, on Fig. 2, our circle command uses built-in callbacks to create
such curves for each function overload. The radius of such circles, including the point-to-polygon distance
in Fig. 2b, are dependent scalar values created with Distance function. Geomatplot overloads operators
on these scalars, points, and vectors so these algorithms can be easily defined with simple expressions.
For example, a p=Eval(po+t#v); expression is equivalent to p=Point(p0,t,v,e(p0,t,v)po+t*v); call creating
the update callbacks automatically.

The mage method is similar to curve, but the callback must take two real numbers or one complex
number or matrices as inputs, and it can run on the GPU as well. The Text function renders depen-
dent text, such as the distance to the curve in Fig. 3a. In Fig. 3b, the built-in MatLab command
delaunayTriangulation runs in the callback to dynamically create both the Delaunay triangulation and the
Voronoi cells for the movable blue points. The Tntersection command creates one or more intersection
points. When the callback of a dependent object fails to define the object properly, for example, an in-
tersection does not exist, the Geomatplot object becomes undefined, and all objects depending on it will
not be rendered. When an object becomes defined again, the rendering resumes as before. Figures 4a,
4b and 5a further demonstrate the versatility of our geometric library.

Dependency graph:

When a Geomatplot script runs, a dependency graph is built and then runs for the first time creating
the initial plot. Then, the callbacks are called in order when an object is moved. Our performance
optimization focuses on fast updates so the interactive plots feel as responsive as possible. Since the
initialization performance is unimportant, we manually created many overloads of Geomatplot functions
to maximize code readability and ease of use. Most of the code base deals with parsing the function
arguments as many arguments can be optional such as label, color or line specification, line width or
marker size, and initial position. When creating a dependent object, most functions accept a variable
amount, of Geomatplot entries, and either pass these to a user-defined callback function or depending on
the type of these input geometries, the appropriate overload is called. For example, Point([0 0]) creates a

Proceedings of CAD’24, Eger, Hungary, July 8-10, 2024, 222-226
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

225

® y
t0 = 0.48308
(a) Geometric Newton-Raphson for closest point (b) Ordinary differential equation solution plot

Fig. 4: The slider controls the initial guess for the Newton-Raphson iteration to find the closest point on
an arbitrary curve. On the right, MatLab’s ode solver is called for the two orbiting celestial bodies in the
co-rotating reference, and it calculates and plots the trajectory of a third massless projectile interactively.

movable point, while pPoint(4,8,e(a,b)0.5%(a+b)) creates the midpoint of 4 and B, same as calling Midpoint (4
,B). Another example is Circle(0,r), Circle(0,P), and Circle(4,B,¢) which create a circle respectively with
center 0 and radius r, center 0 and radius Distance(0,P), and a circle through all three points 4, B, c.

Performance:

Unfortunately, nested MatLab function calls introduce a large latency, so we had to make several opti-
mizations. First, we created a flat dependency graph that lists the dependencies for each movable object
and calls its callbacks in topological order. This also means that only what needs to be updated is
changed, for example, on Fig. 3a, the background distance field is independent from the yellow point
P and the update is much faster when P is moved. Second, many internal callbacks are inlined into
each other wherever possible. Third, when the user writes expressions, such as po+txv, the results of these
operations remain an unevaluated expression so subexpressions do not generate individual callbacks. The
unevaluated expressions carry the symbolic expression with inputs and constants and generate the body
of the callback when the expression is forced to evaluate.

Numerical considerations:

Somewhat surprisingly, drawing a line through two points requires more than just drawing a segment
between two points extrapolated too far away from the initial two points. Such a line would not go
through the two input points due to numerical error. For this reason, we draw a line from a short
sequence of lines. Closest point, intersection, and distance calculations necessitated optimized algorithms
for better performance and numerical accuracy. For example, our Intersect method relies on the general
polyline with polyline intersections, except for circles with polylines and circles with circles for which we
have implemented our numerically accurate and stable methods. Moreover, we improve responsiveness
when drawing images by reducing the resolution while points are being dragged.

Proceedings of CAD’24, Eger, Hungary, July 8-10, 2024, 222-226
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

226

Examples Figure +#lines movingt. stopping t.
Quadratic Bézier Fig. 1b 15 2.62 ms 2.83 ms
Euler line of triangle Fig. 2a 26 9.49 ms 9.24 ms
Sphere trace algorithm Fig. 2b 12 6.59 ms 6.56 ms
RZ 5 R image Fig. 3a 14 4.52 ms 30.79 ms
Triangulation Fig. 3b 16 3.75 ms 3.32 ms
Newton-Raphson Fig. 4a 18 6.89 ms 6.87 ms
Ordinary diff. eq. Fig. 4b 18 15.88 ms 26.03 ms
Hyperbolic Voronoi Fig. 5a 21 20.59 ms 202.51 ms

(b) Code length and interactive update times for the presented examples.
(a) Pseudo-hyperbolic Voronoi dia- For real-time performance, image rendering lowers resolution when dragging
gram on the unit disc points resulting in higher overhead (underlined) when releasing a point.

Fig. 5: Our last example on the left is a Voronoi diagram of the magenta points on the unit disc with

f:z%‘ where z,w € C. The table on the right summarizes the

the pseudo-hyperbolic metric d(z,w) =

number of lines — including comments and empty lines — and the performance of each example code.

Conclusions:

This paper demonstrated the effectiveness of Geomatplot with a variety of examples from different fields
summarized in Table 5b. In general, our geometric library enables the quick creation of interactive plots
with just a few lines of code. Thus, Geomatplot offers a programmable alternative to Geogebra with
decent performance and offers a playground for research projects.

Future work:

The most significant bottleneck that causes noticeable latency when interacting with Geomatplot figures
is that of the MatLab plotting library. Even though our implementation is more responsive than how
Geogebra feels, and we directly update the plot data and use low-level MatLab plot commands, the
rendering of such plots often lags behind our expectations. For this reason, we will be replacing MatLab’s
low-level drawing engine which will be more efficient due to OpenGL shaders, batch rendering, and
viewport culling algorithms.

References:

[1] Hohenwarter, Judith; Hohenwarter, Markus: Introduction to GeoGebra. www.geogebra.org, https:
//tmtw.pbworks.com/f/geogebra-intro-en.pdf, 2008

[2] McMahon, David: MATLAB demystified. New York: McGraw-Hill, 2007.
[3] Quilez, Inigo; Jeremias Pol: Shadertoy BETA. https://www.shadertoy.com/about, 2013

Proceedings of CAD’24, Eger, Hungary, July 8-10, 2024, 222-226
© 2024 U-turn Press LLC, http://www.cad-conference.net

www.geogebra.org
https://tmtw.pbworks.com/f/geogebra-intro-en.pdf
https://tmtw.pbworks.com/f/geogebra-intro-en.pdf
https://www.shadertoy.com/about
http://www.cad-conference.net

