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Introduction:

Freeform curves, such as Bézier curves and B-spline curves, possess numerous desirable properties and are
widely used in various applications. In [11], Yoshida et al. introduced a real-time method for visualizing
the curvature monotonicity regions of polynomial curves. Using the method, users can know the region
of a control point for achieving monotonically varying curvature. In our current study, we theoretically
investigate the curvature monotonicity regions of 2D polynomial Bézier curves, relying on the established
su�cient condition. Leveraging GPU technology, we propose a real-time approach for visualizing the suf-
�cient regions, including the implicit algebraic curves that constitute the su�cient region. The theoretical
investigation allows us to provide a partial explanation for the curvature monotonicity regions.

Related work:

Numerous works have addressed the generation of freeform curves with monotonically varying curvature.
The theoretical foundation for curvature monotonicity regions has been established for quadratic Bézier
curves [7] and quadratic rational Bézier curves [2], elucidating both the necessary and su�cient conditions.
However, for cubic or higher-degree curves, several methods have been proposed to identify the su�cient
conditions. These methods include Pythagorean hodograph quintic spirals [10], Mineur's typical curves
[3], 2D class A Bézier curves [1, 4] and 3D class A Bézier curves [8, 9].

Real-time visualization methods of the curvature monotonicity regions are introduced for 2D polyno-
mial curves in [11] and for 2D rational Bézier curves in [5]. In this paper, we investigate the curvature
monotonicity region of polynomial curves based on the su�cient condition.

Curvature Monotonicity Evaluation Functions:

A polynomial Bézier curve P(t) of degree n with n+1 control points Pj = [xi yi]
T(0 ≤ j ≤ n) is de�ned

by

P(t) =

n∑
j=0

Bn
j (t)Pj (t ∈ [0, 1]), (2.1)

Here, Bn
j (t) is a Bernstein polynomial.
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Fig. 1: Cubic Bézier curve, curvature plot and λ(t).

Curvature monotonicity can be veri�ed by checking whether dκ
ds does not change its sign within

t ∈ [0, 1].

dκ

ds
=

(Ṗ ∧
...
P)(Ṗ · Ṗ)− 3(Ṗ ∧ P̈)(Ṗ · P̈)

|Ṗ|6
, (2.2)

where Ṗ, P̈, or P̈ represents the �rst, second or third derivative of P with respect to t. As described in
[11, 5], curvature monotonicity can be veri�ed by the numerator of dκ

ds , which can be represented as a
Bernstein polynomial of degree 4n− 7 for 2D polynomial curves:

λ(t) =

4n−7∑
i=0

B4n−7
i (t)ξi. (2.3)

By utilizing the Bernstein form equation for the numerator of dκ
ds as described in [5], a single fragment

shader code can be used for Bézier curves of degree n. In the fragment shader, only degree-speci�c parts
are dynamically replaced within the application program. If we opt not to use the equation from [5],
we would need to generate code for Bézier curves of each degree by simplifying ξi, for example, using
`FullSimply' function in Mathemtica.

Theoretical curvature monotonicity region based on the su�cient condition:

For a Bézier curve, if λ(t) ≥ 0 or λ(t) ≤ 0 within t ∈ [0 1], the curvature is monotonically varying. Note
that ξis may have di�erent signs even if the curvature is monotonically varying. As an example, Fig. 1
shows a cubic Bézier curve, its curvature plot and λ(t). ξis are scaled so that they are |ξi| ≤ 1. Although
the signs of ξis are di�erent, λ(t) ≥ 0 for t ∈ [0 1].

To simplify the situation, we investigate these regions based on the su�cient condition, which we
refer to as the �su�cient region�. The su�cient region is de�ned by ξi ≤ 0 for curves with monotonically
decreasing curvature or ξi ≥ 0 for curves with monotonically decreasing curvature, where 0 ≤ i ≤ 4n− 7.
Concerning the su�cient region of a control point Pj (0 ≤ j ≤ n), it is the intersection of all ξi ≥ 0 (or
ξi ≤ 0) with Pj representing a variable associated with ξi. Note that the region may have multiple areas.

The visualization of ξi is performed by using a GPU. To visualize the region of ξi for Pj , we compute
the value of ξi in the fragment shader by replacing the coordinate ofPj with the coordinates corresponding
to each pixel in a window. When we visualize ξi for decreasing curvature, the corresponding pixel is
painted with a user-speci�ed color if ξi < 0. Otherwise, the pixel remains white. When we visualize ξi
for increasing curvature, the corresponding pixel is painted if ξi > 0. By repeating the computation of
ξi by 4n− 7 times and appropriately synthesizing the colors, we can simultaneously visualize all ξis. To
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show the boundary of ξi using anti-aliasing as in Fig. 2, the values of ξi at surrounding 8 pixels are also
computed.

As an example, we demonstrate a 2D polynomial cubic Bézier curve with P0 = [0 0]T, P1 = [1 0]T,
P2 = [3 1]T, P3 = [4 5]T. Fig. 2 illustrates the curvature monotonicity region for each control point,
along with the control polygon and the curve. In the theoretical regions, regions with ξi ≥ 0 are colored
while the regions ξi < 0 remain white. Therefore, the theoretical su�cient regions are colored with white.
For each control point Pj , ξi = 0 is an implicit curve of xj and yj . The su�cient regions and the exact
region where λ(t) ≤ 0 or λ(t) ≥ 0 are computed using the method proposed in [11]. Note that the
theoretical su�cient regions are identical to the su�cient regions. Fig. 3 shows each ξi for Pj .
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Fig. 2: Curvature monotonicity regions for each control point.

In the theoretical region of P0 in Fig. 2(a1), ξ0 = 0 and ξ1 = 0 represent implicit cubic curves. ξ2 = 0
and ξ3 = 0 are implicit quadratic curves. In this case, ξ2 = 0 forms an ellipse and ξ3 = 0 represents a
hyperbola. ξ4 = 0 and ξ5 = 0 are both lines. ξ0 = 0, ξ1 = 0, and ξ2 = 0 intersect at P1. Note that
ξ4 = 0 intersects with P1 in this speci�c case, but not necessarily in a general context. Upon careful
examination of the theoretical region, it becomes evident the boundary is de�ned by ξ0 = 0 and ξ1 = 0.

In the theoretical region of P1 in Fig. 2(b1), ξi = 0 (0 ≤ i ≤ 4) represent implicit cubic curves. ξ5 = 0
is an implicit quadratic curve, which takes the form of a hyperbola in this context. ξ0 = 0, ξ1 = 0 and
ξ2 = 0 intersect at P0. The boundary of the theoretical region is de�ned by ξ0 = 0 and ξ4 = 0.

In the theoretical region of P2 in Fig. 2(c1), ξ0 = 0 represents an implicit quadratic curve, which
takes the form of a hyperbola in this context. ξi (1 ≤ i ≤ 5) represent implicit cubic curves. ξ3, ξ4 and
ξ5 intersect at P3. The boundary of the theoretical region is de�ned by ξ0 = 0, ξ2 = 0 ,ξ3 = 0, ξ4 = 0
and ξ5 = 0. In the theoretical region of P3 in Fig. 2(d1), ξ0 = 0 and ξ1 = 0 are lines. ξ2 = 0 and ξ3 = 0
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Fig. 3: ξis for P0, P1, P2, and P3.

are quadratic implicit curves, taking the form of hyperbolas in this case. ξ4 = 0 and ξ5 = 0 are implicit
cubic curves. ξ3 = 0, ξ4 = 0 and ξ5 = 0 go through P2. The boundary of the theoretical region is de�ned
by all ξis.

Table 1 shows the general characteristics of ξis of 2D cubic Bézier curves. For example, ξ0 is an
implicit cubic with respect to x0 (or y0) and goes through P1. These characteristics are veri�ed using
Mathematica and do not depend on the position of control points, except in degenerate cases.

If ξ0 = 0 or ξ5 = 0 serves as a boundary for the theoretical region, it also forms the boundary of the
exact region. In Fig. 2(a1), ξ0 = 0 occupies most of the boundary of the exact region. In Fig. 2(d1),
ξ0 = 0 from point a to point b, and ξ5 = 0 from point b to point c, coincide with the boundary of the
exact region.

In our analysis, we examined theoretical curvature monotonicity regions based on the su�cient con-
ditions. This allows us to provide a partial explanation for the curvature monotonicity regions, especially
when the sizes between the exact regions and the su�cient regions are similar, as depicted in Fig. 2.
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Table 1: Characteristics of ξi of 2D cubic Bézier curves.

P0 P1

ξ0 ξ1 ξ2 ξ3 ξ4 ξ5 ξ0 ξ1 ξ2 ξ3 ξ4 ξ5
degree 3 3 2 2 1 1 3 3 3 3 3 2

goes thrh P1 P1 P1 - - - P0 P0 P0 - - -

P2 P3

ξ0 ξ1 ξ2 ξ3 ξ4 ξ5 ξ0 ξ1 ξ2 ξ3 ξ4 ξ5
degree 2 3 3 3 3 3 1 1 2 2 3 3

goes thrh - - - P3 P3 P3 - - - P2 P2 P2

Conclusions:

We analyzed the curvature monotonicity regions of 2D polynomial Bézier curves based on the su�cient
condition. Although we showed theoretical su�cient regions of a cubic Bézier curve, our program can
handle higher degree curves. With the use of a GPU, we can interactively move a control point and can
show the su�cient region with all implicit curves (ξis) in real time. We are currently extending the idea
to rational curves and 3D curves.

Norimasa Yoshida, https://orcid.org/000-0000-1234-5678
Takafumi Saito, https://orcid.org/0000-0001-5831-596X
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