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Introduction: 

In recent years the acquisition of point clouds using different 3D sensors (LIDAR, structured light, etc.) 
or 2D camera sensors using photogrammetry has led to the need to give a higher semantic meaning to 
the captured raw data so as to allow for a higher-level processing in CAD applications or to use the 
semantics for various applications like autonomous driving, robotics, urban and rural classifications 
etc. A way to do this is through point cloud semantic segmentation. Point cloud semantic segmentation 
is the technique to assign to each vertex of the 3D point cloud a semantic label. Point cloud semantic 
segmentation differs from the known general term point cloud segmentation. In point cloud 
segmentation the aim is to partition the point cloud into homogenous areas which have a geometric 
shape like the planar roof and walls of a building, while in semantic segmentation the aim is to give to 
the segmented parts a characteristic that makes sense in human perception, like the handle of a cup, 
the wing of an airplane the head, arms and feet of a human figure. The later parts have complicated 
geometry and are difficult to be described by geometric surfaces. 

Semantic segmentation can be unsupervised using various techniques like convexity analysis [3] or 

using the protrusion function like in the work presented in this paper. Recently, supervised techniques 
have been introduced using machine learning techniques like for example Maximum Likelihood 
Classifiers [4], Support Vector Machines [5], Random Forests [2]. Though the most active field of 
machine learning in semantic segmentation is nowadays deep learning. In this field the point cloud is 
either (i) transformed into multi-view images [9], (ii) transformed into voxels by partitioning it into a 
volumetric grid [6], and (iii) used directly with its coordinates [8] or with its edge connectivity [11]. In 
all cases convolutional neural networks are used to process and generate features. These convolutions 
are either one-dimensional, two-dimensional or three-dimensional. 

The main problem with supervised learning is that there is a need of a significant number of 
annotated point clouds with labels to train the neural networks, which is cumbersome and needs a lot 
of human labor. Also, to make things worse, for each new part there is a need to provide new 
annotations for the network to process it. Of course, a neural network has the ability to generalize so 
as to be able to label points belonging in a variant of the specified class, but it can’t generalize to label 
a completely new part that it has not been trained to recognize. In contrast, unsupervised semantic 
segmentation does not have this limitation. It can be used to segment a variety of objects using 
general geometric characteristics that a wide variety of objects have. A class of point clouds that are of 
interest in this work is those that are sampled from articulated objects, i.e., having protrusions. This 
work, extents the work of semantic segmentation of polygonal meshes presented in [1] to 
unstructured point clouds. With the proposed methodology there is no need to reconstruct the 
polygonal mesh surface of the object, a task that can be quite challenging and time consuming, 
especially with the presence of noise. 
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Fig. 1: (a) Visualization of the protrusion function calculated on the point cloud, blue to red depict 
small to large values. (b) The salient points of the object are illustrated with different colors. (c) The 
salient points are grouped according to the protrusion they belong to. (d) The core of the object is 
illustrated in yellow. (e) The final segmentation of the point cloud is illustrated with each part having a 
different color. 

Methodology: 
The work of Agathos et al. [1] segments semantically the triangle mesh of an object containing 
protrusions. Its extension to point clouds that capture the geometry of an object with protrusions, is 
not trivial and its constituent steps to achieve a successful segmentation require methods and 
algorithms suitable for point clouds. The development of such algorithms is a challenging task since, 
contrarily to polygonal meshes, there is no definition of any kind of surface representing the object. 
Furthermore, all the proposed algorithms are not using any other information, like normal vectors, 
except the raw coordinates of the point cloud. 

The steps to achieve semantic segmentation to a point cloud are: (i) Computation of the protrusion 
function on the point cloud, (ii) Computation of the salient points, (iii) Grouping of the salient points, 
(iv) Boundaries extraction, (v) Semantic parts extraction with the aid of graph-cut. A brief description 
of all steps is given in the sequel. 

 
Computation of the protrusion function 

The protrusion function 3:protf  is defined for each vertex p  of the point cloud P  as: 

'

( ) ( , ')prot
p P

f p g p p  
(1) 

where ( , ')g p p  the geodesic distance of point p  to point 'p . The geodesic distance is found by applying 

the Dijkstra algorithm [10] using the Elliptic Gabriel Graph to provide connectivity between the raw 
points [7]. The protrusion function receives small values at the center of the object and high values at 
its extrema (protrusions), see Fig. 1(a).  

The problem with the computation of the protrusion function is its high complexity since it has to 
be calculated for each vertex of the point cloud making it intractable to point clouds consisting of 
thousands of points. In [1] an approximation to the protrusion function is proposed and it is followed 
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also in this work. Specifically, the point cloud is divided into non overlapping geodesic patches. These 
patches are created by applying the Dijkstra algorithm constrained with a distance threshold on 
randomly chosen points of the point cloud. Each geodesic patch has a center b  and an area, ( )area b , 

computed by finding the mean-radius of the 1-ring neighborhood of each point contained in the patch 
and taking the sum of the disk areas defined by these radii. The k-ring neighborhood of a point is 
defined with the aid of the Elliptic Gabriel Graph. By considering the set B  of all the centers of the 
geodesic patches the protrusion function can be approximated as:  

( ) ( , ) ( )prot
b B

f p g p b area b  
(2) 

 
Computation and grouping of the salient points 
The points where the protrusion function receives a local maximum are the salient points. In order to 

find the local maxima, for each vertex p  of the point cloud P  a local neighborhood pN  needs to be 

defined. This neighborhood can be (i) a k-ring neighborhood, or (ii) a geodesic neighborhood calculated 
by constraining the Dijkstra algorithm with a threshold distance. In this work the k-ring is used. In Fig. 
1(b) the salient points (local maxima) of the model are shown with different colors. As can be 
observed, for each semantic part of the object more than one salient point may be found. In order to 
distinguish the salient points according to the part they belong to they need to be clustered (grouped). 

Assuming the set of salient points is defined as { , 1... }i sS s i N , a value 
sT  is defined:  

1

1 1

( , )

( 1)

Ns Ns

i j
i j i

s
s s

g s s

T
N N

 
(3) 

The salient points are clustered in such a way so as each cluster contains the salient points whose 

geodesic distance with each other is smaller than the threshold value
sT . The geodesic distance 

between the salient points is also calculated with the Dijkstra algorithm. Fig. 1(c) shows this clustering 
of the salient points. The representative salient point of each cluster is the one with the highest value 
of protrusion function. 
 
Computation of the core of the object 
The core of the object are the vertices of the point cloud that belong to the center of the object and its 
boundaries define the boundaries of the protrusions. Assuming that the representative salient points 

are defined as ˆ ˆ{ , 1... }i cS s i N , where 
cN  the number of clusters then the geodesic paths between 

the salient points can be found. Again, the geodesic paths can be found with the Dijkstra algorithm. 
The vertices of the point cloud are inserted in a priority queue having as key the protrusion function 
value. The vertices are then extracted from the priority queue one by one until a sufficient portion of 
the geodesic paths is covered. For further details of the algorithm applied the reader is referred to [1] 
(Fig. 4). These extracted vertices constitute the core of the object and are utilized for the 
establishment of the protrusions boundaries, Fig. 1(d). 

 
Boundary extraction of the protrusions 
The segmentation boundaries are defined as the boundaries between the core of the object and the 
established protrusions. It is assumed that a representative salient point represents a protrusion (part) 

whose segmentation boundary needs to be found. Let this representative be denoted as reps , and let 

minC  be the nearest point of the core to reps . Next, a distance function ( )
reps
D p  is defined for each point 

p  of the point cloud as the distance from the representative reps  to point p . This distance function is 

defined for each connected pair of points ( , )u v  in the Elliptic Gabriel Graph as 
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Model/Method Human  

62590 points 

Table 

74623 points 

Ant 

43454 points 

Chair 

64548 points 

Donkey 

73287 points 

Point-based 2.935 1.225 2.625 1.316 3.470 

Polygon-based 3.686 1.316 3.099 1.225 5.354 

 

Tab. 1 Execution time in secs for the segmentation of the models of Fig. 2. 

 

( ) ( )
( , ) (1 )

_ _

prot protf u f vu v
dist u v

average dist average prot
 (4) 

where [0,1] , _average dist  and _average prot  the average value of all pair differences in length and 

protrusion respectively. In order to find the value of ( )
reps
D p  for every point p  the Dijkstra algorithm 

is applied on the Elliptic Gabriel Graph using for edge weights the distance function defined in 
equation (4). The region defined by the points with distance value in the range 

1 min 2 min[(1 ) ( ),(1 ) ( )]
rep rep reps s sD d D C d D C  is considered, because the segmentation boundary is most 

likely to consist of points belonging in this interval. In order to find it, thresholding is applied on the 
distance function to create successive region rings and their successive area ratio is examined. The 
area of the region ring is found by using the 1-ring neighborhood of the points belonging in the region. 
When this ratio is above a value then the perimeter that is examined is defined as the segmentation 
boundary.  

Similarly to [1], after the boundary is found a graph-cut algorithm is applied to refine it so that it 
passes through the concavities of the object. The flow network graph is defined by the elliptic Gabriel 
graph and the edge-capacities required for the graph cut algorithm are defined on the midpoints of 
each of its edges. Specifically, for each edge ( , )e u v  of the elliptic Gabriel graph the middle point ep  

is found by averaging the vertices of the point cloud corresponding to its endpoints. On this point the 
Gaussian curvature is employed. After boundary refinement the part is extracted with region growing 
from the representative salient point, accumulating points until the segmentation boundary is reached.  

In Fig.2, the semantic segmentation of various kinds of objects is illustrated with and without 
noise. The first row presents the results of the proposed method applied to several articulated objects. 

 
  

 
 

 
 

 
 

 

Fig. 2 Semantic segmentation of various point clouds. First row without noise. Second row with noise 
(1% random displacement of the points from their initial positions). 
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The second row is using the same point clouds contaminated with noise to simulate the input from a 
real-world scanning procedure. It can be observed that the segmentation is consistent in both cases. In 
fact, the proposed method succeeded in providing meaningful semantic segmentation in all tested 
objects using as input the raw scanning data. In Tab.1 the execution time of the proposed algorithm is 
shown in comparison with the execution time of the mesh-based approach of [1] performed on the 
triangulation of the point clouds of the models of Fig.2. It can be observed that the proposed method 
performs competitively to the mesh-based methodology. 

Conclusions: 
In this work, a new methodology for the semantic segmentation of point clouds has been presented 
based on the main workflow implemented for polygonal meshes by Agathos et al. [1]. New algorithms 
have been devised for each step of the methodology which are applicable to point clouds. With the 
new methodology a point cloud of an articulated object can be successfully segmented to semantic 
parts without the need to produce a polygonal mesh which can be a tedious process in cases of 
complicated topology and/or noise. Also, the new methodology does not need the normals of the 
vertices of the point cloud making it more resistant to noise. This work has an advantage over 
machine learning methods because it can segment a vast variety of articulated objects, as Fig. 2 shows, 
without the need of preprocessing as in neural networks. The limitation of this methodology is that it 
needs sufficient sampling so as to create proper connectivity between the vertices of the point cloud.  
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