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Introduction:

The shape uniqueness theorem for free-form curves shows the conditions on which the shapes of two
parametric curves de�ned by three control points are identical altough their parametrization may be
di�erent [1]. According to this theorem, even though their blending functions look di�erent, the curves
become identical by reparametrizaion under some conditions on their blending functions. In this paper,
we will extend this theorem for curves that are de�ned by four or more control points and show several
examples of applications of the theorem.

Identical Shape of Free-from Curves:

Identical shape of two parametric curves is de�ned as follows [2]:

De�nition 1. For two parametric curves r : I → R3 and r̃ : Ĩ → R3, there exists a C∞ function
φ : I → Ĩ, 1) φ is a one to one and onto mapping from I to Ĩ. 2) φ is strictly increasing. 3) For all
t ∈ I, r̃(φ(t)) = r(t). We say that r and r̃ de�ne the same curve or their shapes are identical.

Then r̃((φ(t)) is called reparametrization of r(t).

Uniqueness Theorem of the Shape of the Curve De�ned by Three Control Points: [1]

In this paper, we assume that for 0 ≤ t ≤ 1, a curve C(t) is de�ned by three control points P 0, P 1 and
P 2 as

C(t) = u(t)P 0 + v(t)P 1 + w(t)P 2 (2.1)
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where 0 ≤ w(t) ≤ 1, 0 ≤ v(t) ≤ 1 and

u(t) + v(t) + w(t) = 1

w(0) = 0

w(1) = 1

dw(t)

dt
> 0 for 0 < t < 1 (2.2)

We have removed the condition that u(t) = w(1− t) from the original de�nition [1] since the theorem is
still satis�ed. If there is such a constant α that

v(t)2 = αu(t)w(t) (2.3)

for 0 ≤ t ≤ 1, then the following theorem is satis�ed:

Theorem 1. Uniqueness Theorem: The shape of the curve C(t) is determined by α exclusively and it
does not depend on the basis functions {u(t), v(t), w(t)} which are used to de�ne the curve.

Proof. For a given value w0 = w(t0), 0 ≤ w0 ≤ 1, let u0 = u(t0). Since v(t) = 1− u(t)− w(t),

(1− u0 − w0)
2 = αu0w0 (2.4)

Hence

u0 =
(α− 2)w0 + 2−

√
αw0((α− 4)w0 + 4)

2
(2.5)

Since u0 is uniquely determined by w0, the location of the point C(t0) is also uniquely determined because
{u(t), v(t), w(t)} are barycentric coordinates of triangle P 0P 1P 2. By changing t from 0 to 1, w(t) also
increases from 0 to 1 and the shape of the curve C(t) is also completely determined. Q.E.D.

Then u(t) = u(w(t)), v(t) = v(w(t)), and w = w(t) are reparameterized blending functions. For
example, the blending functions of quadratic Bézier curve u(t) = (1− t)2, v(t) = 2(1− t)t, and w(t) = t2

give α = 4 and u(w(t)) = (1−
√
w(t))2, v(w(t)) = 2(1−

√
w(t))

√
w(t).

Figure 1 shows u0 for 0 < w0 < 1 and 0 < α < 10.

Fig. 1: u0 for 0 < w0 < 1 and 0 < α < 10.

Generalization - The Case where Gobithaasan-Miura's Recursive Algorithm is satis�ed:
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In this section, we assume that the blending functions satisfy Gobithaasan-Miura's recursive algorithm [3].
Then

C(t) = u(uP 0 + vP 1 + wP 2 + xP 3)

+ v(uP 1 + vP 2 + wP 3 + xP 4)

+ w(uP 2 + vP 3 + wP 4 + xP 5)

+ x(uP 3 + vP 4 + wP 5 + xP 6)

= u2P 0 + 2uvP 1 + (2uw + v2)P 2 + 2(ux+ vw)P 3 + (2vx+ w2)P 4 + 2wxP 5 + x2P 6

where the blending functions u, v, w, and x of parameter t are assumed to satisfy partition of unity.
Hence for an arbitrary t ∈ [0, 1],

u+ v + w + x = 1 (2.6)

is satis�ed.
For the curve to be represented by seven control points with seven blending functions, the following

equations must be satis�ed:

v2 = αuw (2.7)

w2 = βvx (2.8)

vw = γux (2.9)

where α > 0, β > 0, and γ > 0 are constants taht are independent from parameter t. However, the
product of both sides of Eqs.(2.7) and (2.8) yields

v2w2 = αβuvwx

vw = αβux (2.10)

Therefore

γ = αβ (2.11)

When α and β satisfy Eqs.(2.7) and (2.8), respectively, Eq.(2.9) is automatically satis�ed.
Therefore, if the blending functions u, v, w and x satisfy the following conditions, for a given function

x the other functions u, v, and w are uniquely determined. Thus we can elevate the degree and increase
the number of control points of the shape uniqueness theorem.

u+ v + w + x = 1, v2 = αuw, w2 = βvx. (2.12)

The function x(t) satis�es the followings:

x(0) = 0,

x(1) = 1,

dx(t)

dt
> 0. (2.13)

Theorem 2. Shape Uniqueness Theorem of Higher Degree (#control points= 4): The shape of the curve
C(t) is determined by α and β and it does not depend on the blending functions of use {u(t), v(t), w(t), x(t)}.
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Proof. For x0 = x(t0) (0 ≤ x0 ≤ 1), we assume that u0 = u(t0), v0 = v(t0), and w0 = w(t0). From Eqs.
(2.7) and (2.8),

v0 = α
2
3 β

1
3u

2
3
0 x

1
3
0

w0 = α
1
3 β

2
3u

1
3
0 x

2
3
0

Since u0 + v0 + w0 + x0 − 1 = 0,

u0 + α
2
3 β

1
3u

2
3
0 x

1
3
0 + α

1
3 β

2
3u

1
3
0 x

2
3
0 + x0 − 1 = 0 (2.14)

Let the left side of the above equation be f(u0;x0). When x0 = 0,

f(u0; 0) = u0 − 1 (2.15)

Hence u0 = 1. When x0 = 1,

f(u0; 1) = u
1
3
0 (u

2
3
0 + α

2
3 β

1
3u

1
3
0 x

1
3
0 + α

1
3 β

2
3 ) (2.16)

Then u0 = 0.
If we assume that 0 < x0 < 1,

f(0;x0) = x30 − 1 < 0

f(1;x0) = α
2
3 β

1
3x

1
3
0 + α

1
3 β

2
3x

2
3
0 + x0 > 0

Furtheremore

∂f(u0;x0)

∂u0
= 1 +

2

3
α

2
3 β

1
3x

1
3
0 u
− 1

3
0 +

1

3
α

1
3 β

2
3x

2
3
0 u
− 2

3
0 > 0 (2.17)

Hence for x0, f(u0;x0) is a continuous function of u0 and strictly increasing. Since f(0;x0) < 0 and
f(1;x0) > 0, For x0, u0 is determined such that 0 ≤ u0 ≤ 1. {u(t), v(t), w(t), x(t)} are barycentric
coordinates of tetrahedron P 0P 1P 2P 3 and C(t0) is uniquely determined. When t changes from 0 to 1,
x(t) changes 0 to 1 and the whole shape of the curve C(t) is determined completely. Q.E.D.

Note that even when tetrahedron P 0P 1P 2P 3 is degenerated into a 2D plane, the shape of the curve
is uniquely determined by barycentric coordinates.

An application to the rational cubic Bézier curve:

It is well known that as a reparameterization of a rational Bézier curve of degree n, its weights wi can
be changed without changing the curve shape as follows: [4].

ŵi = ciwi; i = 0, · · · , n. (2.18)

where c 6= 0 is a constant. For example, when c = n
√
w0/wn, then if we subdivide all weights by w0, we

obtain w0 = wn = 1. When n = 3,

u(t) =
(1− t)3w0

f(t)
,

v(t) =
3(1− t)2tw1

f(t)
,

w(t) =
3(1− t)t2w2

f(t)
,

x(t) =
t3w3

f(t)
. (2.19)
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where f(t) = (1− t)3w0 + 3(1− t)2tw1 + 3(1− t)t2w2 + t3w3. On these blending functions,

α =
v(t)2

u(t)v(t)
=

3w2
1

w0w2

β =
w(t)2

v(t)x(t)
=

3w2
2

w1w3

When c = 3
√
w0/w3, ŵ0 = w0, ŵ1 = cw1, ŵ2 = c2w2, and ŵ3 = c3w3. Then

3ŵ2
1

ŵ0ŵ2
=

3w2
1

w0w2

3ŵ2
2

ŵ1ŵ3
=

3w2
2

w1w3

are satis�ed. Therefore from the shape uniqueness theorem of higher degree (thr number of control points
= 4), we know the shape is unchanged. Note that when thr number of control points = 3, the similar
argument is satis�ed. When w0 = w3 = 1 as �normalized', we obtain

α =
3w2

1

w2
,

β =
3w2

2

w1
(2.20)

Conclusions:

In this study, we consider the case where the blending functions satisfy Gobithaasan-Miura's recursive
algorithm [3]. A higher-order (third-order) version of the shape uniqueness theorem is presented. In the
future, further improvement of the theorem to include more various cases can be study.
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