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Introduction: 
Symmetry is a geometrical property beneficial in many applications in mechanical engineering 
[6][7][9][11][12]. In mechanical design during solid modeling, 3D CAD models are often shaped 
symmetrically for different reasons: to simplify the 3D CAD modeling process, to reduce the 
complexity of assemblies & the number of unique parts [4], or to minimize assembly errors & 
assembly time [11]. The symmetry information (i.e., the planes & axes of symmetry) is most often not 
explicitly stored in the native 3D CAD models unless the final shape of the model has been created 
using mirroring or pattern operations. The neutral exchange file formats currently also do not support 
storing any symmetry information. Therefore, the existence of symmetry in the 3D CAD models is 
usually checked & recognized visually by mechanical engineers. This may be a tedious & time-
consuming task, especially if the 3D CAD model's shape is geometrically complex or consists of a large 
number of topological entities. Thus, Computer-Aided Symmetry Detection (CASD) is preferred, which 
supports mechanical engineers in detecting the planes & axes of symmetry in the 3D CAD models. A 
common approach of many CASD techniques [1][6][11] is to create a set of planes of symmetry 
candidates (POSCs) & axes of symmetry candidates (AOSCs), which are then evaluated to identify the 
actual planes & axes of symmetry among them. The candidates are usually identified from the input 
model’s geometry (e.g., point clouds, surfaces, mesh triangles, etc.) by for instance pair matching [11]. 
Consequently, a significant number of candidates may be generated without their practical need in 
detecting symmetries, thus making the CASD computationally demanding [5]. Hence, this study is 
exclusively focused on the stage of CASD that deals with the identification of POSC & AOSC in B-rep 
CAD models. For that purpose, a procedure for reducing the number of POSC & AOSC for exact global 
& partial axi- & reflection symmetric 3D CAD models with Boundary Representation (B-rep) is 
proposed. 

 
Related work: 
The existing studies obtained the POSCs & AOSCs from the B-rep’s topological elements (e.g., loops, 
faces, etc.) & their underlying geometrical properties [6][11] or from the principal axes of inertia [1]. Li 
et al. [6] obtained the POSCs & AOSCs from one, two, or three adjacent faces using the intrinsic 
parameters of the underlying analytic surfaces & their intersections (vertices, edges, & loops). Then, a 
two-level propagation process over the B-rep was used to determine the global or local planes or axes 
of symmetry. The drawback of the study is that a combinatorial analysis was used to obtain the 
combinations of surfaces, their adjacencies, & intersections for identifying the candidates. 
Consequently, if the 3D CAD model contains some non-predicted combinations of analytical surfaces 
or any numerical surfaces (e.g., B-spline), the corresponding candidates may remain undetected. Buric 
et al. proposed the use of three POSCs & three AOSCs aligned with the principal axes of inertia & 
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passing through the center of gravity (COG). The approach did not apply to partially symmetric 3D 
CAD models or those exhibiting exact reflection symmetries that are misaligned with the principal 
axes. Tate et al. identified the POSCs by pairing identical loops of the same type through their 
geometric properties (e.g., surface area, number of edges, etc.), while the AOSCs were identified from 
single loops. Then, duplicate POSCs & AOSCs were eliminated by comparison of their location & 
orientation. The obstacle of this study is that the proposed similarity criterion was not adequate as two 
non-identical topological elements (in this case loops) can have the same geometrical properties (e.g., 
loop area, number of edges, etc.). Hence, the present paper investigates the use of similarity measures 
for identifying similar topological elements & to pair them to generate POSCs. 

In general, similarity has been studied in mechanical design to support designers in generating 
new designs [3], or in manufacturing to extract existing product information such as cost estimations 
in machining [2]. Moreover, recognizing similarities in 3D CAD models may be beneficial for the reuse 
of existing design solutions [14]. Thereby, a given input CAD model (new design) is used to retrieve 
similar CAD models from the database (existing designs). Further, similarity recognition may be 
exploited for the clustering of CAD models [13]. This study is, however, focused on common similarity 
measures from statistics which are used to compare the similarity between two finite data sets. For 
instance, the Cosine Similarity (CS) computes the cosine of the angle between two vectors A & B: 

 CS cos
X Y

X Y

A B

A B
. (1.1) 

CS was utilized to compute the similarity between two Opitz code vectors (the CAD model features 
were presented by alphanumerical digits) [14]. Another similarity measure, the Jaccard index (JI) is 
defined as the size of the intersection  divided by the size of the union of two finite data sets X & Y:  

 JI
X Y X Y

X Y X Y X Y
, (1.2) 

where |X| & |Y| represent the cardinalities of the sets. The JI has been used for clustering purposes [10], 
to measure the similarity between machines/parts & group them. Alternative similarity measures 
related to the Jaccard index are the Sørensen–Dice coefficient (SDC), which is defined as twice the size 
of the intersection divided by the sum of their cardinalities. The Szymkiewicz–Simpson coefficient (SSC) 
or Overlap coefficient is described as the ratio between the size of the intersection & the smaller 
cardinality of two data sets. The Braun-Blanquet coefficient (BBC) represents the size of the intersection 
divided by the larger cardinality of two data sets. The similarity measures range between 0 (non-
similar) & 1 (absolutely similar). In this study, the mentioned similarity measures are explored in terms 
of their possibilities & applicability for detecting similar face pairs in B-rep CAD models. 

The proposed Procedure for Identifying Planes and Axes of Symmetry Candidates: 

The proposed procedure for identifying the POSCs & AOSCs addresses the mentioned drawbacks of 
the CASD technique in [1]. It utilizes a combination of three approaches to obtain the candidates: from 
single faces, similar face pairs, & the principal axes of inertia. The procedure consists of two main 
phases: generating & trimming the POSCs & AOSCs (see flowchart in Fig. 1). The initial set of POSCs is 
generated through the pairing of similar faces, but only of the plane surface type, while the initial set 
of AOSCs is generated from single faces with the underlying cylindrical surface type. In addition, three 
POSCs & three AOSCs are always generated from the principal axes of inertia to cover possible exact 
symmetries that are aligned with the principal axes. The procedure for computing the principal axes of 
inertia is given in the paper [1]. Then face pairs are generated & subjected to quick filtering to reduce 
the computational effort. For each face pair the ratio between their surface areas needs to be 
Ai/Aj≤0.90 (Ai≤Aj) to proceed to the computation of the similarity measure. If the similarity measure is 
above the threshold value STH, the location of the POSC is determined from the midpoint between the 
two face centroids, while its orientation depends on the arrangement between the faces, which may be 
parallel, coplanar, or arbitrarily angled. If two faces are parallel, the POSC orientation is equal to the 
normal vector of either one of the faces. If two faces are coplanar, the POSC orientation corresponds 
to the vector between the face centroids. Finally, if two faces are arbitrarily angled, the orientation of 
the POSC is obtained by subtracting the normal vectors of the two faces. The initially generated POSCs 
& AOSCs need to be further processed in the trimming phase where first duplicates, i.e., coincident 
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candidates, are removed. Then, the point-to-plane distance (PTPD) is computed for each POSC, & the 
point-to-line distance (PTLD) for each AOSC, to assess their distances from the COG. It is known that if 
an object is exact global symmetric, its planes and/or axes of symmetry will pass through the COG 
[11], while in the case of partial symmetric objects, they will be close to the COG [8]. Hence, the PTPD 
& PTLD are computed & queried to be below an empirically defined tolerance distance δ=0.05·D, where 
D is the CAD model’s minimum bounding box diagonal. Finally, the trimmed POSC & AOSC are used 
afterward as input for the Symmetry Detection to identify the actual POS or AOS, which is not the 
scope of this study. 

 

    

 

 

 

 

 

  
 

  
  

  *FPs – Face Pairs                       Generation phase                          Trimming phase                    **PAOI – Principal Axes of Inertia 
 

Fig. 1: Flowchart of the proposed procedure for identifying the POSC & AOSC. 

The similarity measures JS, CS, SDC, SSC, & BBC have been investigated to explore their applicability for 
matching similar face pairs. Within the context of this study, faces in the B-rep CAD model can be 
observed as sets of edges. First, faces are decomposed into edges & designated using a string code (e.g. 
“oLI10”), as shown in Fig. 2. The first letter of the string code indicates whether the edge belongs to an 
outer “o” or inner “i" loop. The next two letters describe the edge’s underlying curve type, “LI” for line, 
“CI” for circle, “EL” for ellipse, “BC” for B-spline curve, & so on. Finally, the last part of the designation 
represents the length of the curve in millimeters.  

          
Fig. 2: An example of a part & the designation of its faces & edges.  

Tab. 1 shows several test cases of face pairs with varied similarity & their respective similarity 
measures computed. The numerators in all mentioned similarity measures are the same (the number of 
common elements in both data sets) & the main difference derives from the denominators. All 
similarity measures correctly recognize absolute similar (Tab. 1, a) & non-similar face pairs (Tab. 1, f). 
The JI is the most conservative similarity measure among the tested as the computed scores are the 
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lowest. By its definition, the JI always stronger penalizes differences between two sets of edges, even if 
one is a proper subset of the other (Tab. 1, e). The BBC penalizes slightly less than JL the differences in 
the size of the sets as the number of common edges is divided by the larger size between the two sets 
of edges. The SDC essentially doubles (i.e., “weights”) the intersection in the numerator & divides it 
with the sum of the cardinalities from both sets of edges. Consequently, this produces less 
penalization than JI & BBC, indicating higher similarity. The difference between the CS & SDC negligible 
because their denominators (√(|X|∙|Y|) vs 0.5(|X|+|Y|)) will result in nearly identical scores, as long as the 
number of edges in both faces does not differ significantly (one order of magnitude). The SSC is the 
least conservative similarity measure, which in certain cases may result in a false positive identical face 
pair. This happens if all edges in the one face are also found in the other face (Tab. 1, d), then SSC=1 
regardless of how many additional edges are in the other face. Based on the computed scores for the 
given test cases, it can be concluded that the JI & BBC seem to be not adequate to measure the 
similarity between two faces due to the considerable penalization leading to an underestimation of 
similarity, while the SSC in some cases may overestimate the similarity. Hence, the CS & SDC, which 
both produce nearly identical scores, appear to be the most convenient similarity measures between 
two faces. To consider a face pair similar, the condition CS≥STH or SDC≥STH needs to be fulfilled, 
whereby based on the computed examples STH can be set to STH=0.75. 

 Face pairs /i jA A  CS  JI  SDC  SSC  BBC  

a) 
 

1 1 1 1 1 1 

b)  0.96 0.80 0.67 0.80 0.80 0.80 

c)  0.97 0.95 0.90 0.95 0.95 0.95 

d) 
 

0.98 0.91 0.83 0.91 1 0.83 

e)  1 0.75 0.60 0.75 0.75 0.75 

f)           1 0 0 0 0 0 

Tab. 1: Example of face pairs & the computed similarity measures. 

Testing: 
The proposed procedure has been implemented in Solidworks 2020 using its Application Programming 
Interface & tested on 150 CAD models (Fig. 3 & 4). The CAD models subjected to testing were exact 
global (including multiple reflectional symmetric) & partially symmetric. Test results show that the 
procedure identified in approx. 95% of test cases the correct POSCs & AOSCs, among which were also 
the actual planes & axes of symmetry. In only 5% of test cases, when the reflectional symmetric CAD 
models do not have any faces of the plane surface type (Figure 4), the procedure failed to detect the 
respective POSCs (the typical CAD models where this happens are for instance gears, flanges, etc.). 
Compared to Li et al. [6], the present study produces ≈105 times fewer candidates per CAD model & 
respectively ≈138 times fewer than the study by Tate et al. [11]. 

     
Fig. 3 Examples of CAD models subjected to testing & the obtained POSCs & AOSCs. 

 
Fig. 4 Examples of CAD models where the corresponding POSCs were not properly detected. 

http://www.cad-conference.net/


301 
 
 

 

Proceedings of CAD’23, Mexico City, Mexico, July 10-12, 2023, 297-301 
© 2023 CAD Solutions, LLC, http://www.cad-conference.net 

 
 

Conclusion: 
This paper addresses the identification of the planes & axes of symmetry candidates in B-rep CAD 
models. The procedure consists of two phases: generating & trimming candidates. The AOSCs were 
generated from single faces (cylindrical surfaces type), while the POSCs were generated from similar 
face pairs (planar surface type), which were identified by means of a similarity measure (Cosine 
similarity). The proposed procedure has been tested on 150 CAD models & the results showed that it 
identified the right candidates were detected in 95% of test cases. Compared to past studies, the 
proposed procedure results in fewer candidates, which may be an important factor to consider for 
reducing the time complexity of CASD. In the future, the proposed procedure shall be improved to 
detect the corresponding candidates in CAD models without plane surfaces and subjected to further 
testing. 

References: 
[1] Buric, M.; Brcic, M.; Bojcetic, N.; Skec, S.: Computer-Aided Detection of Exact 

ReflectionreAxisymmetry in B-rep rep CAD Models, Computer-Aided Design and Applications, 
20(5), 2023, 884-897, https://doi.org/10.14733/cadaps.2023.884-897   

[2] Cardone, A.; Gupta, S. K.; Deshmukh, A.; Karnik, M. Machining feature-based similarity 
assessment algorithms for prismatic machined parts, Computer-Aided Design, 38(9), 2006, 954-
972, https://doi.org/10.1016/j.cad.2006.08.001 

[3] Chaudhari, A. ; Bilionis, I. ; Panchal, J. Similarity in Engineering Design: A Knowledge-Based 
Approach, Proceedings of the ASME 2019 International Design Engineering Technical 
Conferences and Computers and Information in Engineering Conference. Volume 7: 31st 
International Conference on Design Theory and Methodology. Anaheim, California, USA. August 
18–21, 2019. V007T06A045. ASME. 2019, https://doi.org/10.1115/DETC2019-98272 

[4] Giesecke, F. E.; Lockhart, S.; Goodman, M.; Johnson, C.: Technical Drawing with Engineering 
Graphics 15th edition, Pearson Education, US, 2016 

[5] Hruda, L.; Kolingerová, I.; Lávička, M.: Plane Space Representation in Context of Mode-Based 
Symmetry Plane Detection, ICCS 2020: Computational Science – ICCS 2020, 2020, 509-523, 
https://doi.org/10.1007/978-3-030-50426-7_38  

[6] Li, K. ; Foucault, G.; Leon, J.; Trlin, M.: Fast global and partial reflective symmetry analyses using 
boundary surfaces of mechanical, Computer Aided Design, 53, 2014, 70-89. 
https://doi.org/10.1016/j.cad.2014.03.005 

[7] Ma, Z.; Zhang, T.; Liu, F.; Yang, J.: Knowledge discovery in design instances of mechanical 
structure symmetry, Advances in Mechanical Engineering, 7(11), 2015, 1-19. 
https://doi.org/10.1177/1687814015615044 

[8] Parry-Barwick, S.; Bowyer, A: Symmetry analysis and geometric modelling. Proceedings DCTA’93, 
Digital Image Computing-Techniques and Applications, Sydney, Australia, 1993. 

[9] Qiu, Q.; Chen, X.; Yang, C.; Feng, P.: Classification and Effects of Symmetry of Mechanical 
Structure and Its Application in Design, Symmetry, 13(4), 2022, 683. 
https://doi.org/10.3390/sym13040683  

[10] Seifoddini, H.; Djassemi, M. Merits of the production volume-based similarity coefficient in 
machine cell formation, Journal of Manufacturing Systems, 1995, 14(1), 35-44, 
https://doi.org/10.1016/0278-6125(95)98899-H   

[11] Tate, S.; Jared, G.: Recognizing symmetry in solid models, Computer-Aided Design, 35, 2003, 673-
692. https://doi.org/10.1016/S0010-4485(02)00093-3  

[12] Tierney, C.; Boussuge, F.; Robinson, T.; Nolan, D.; Armstrong, C.: Efficient symmetry-based 
decomposition for meshing quasi-axisymmetric assemblies, Computer-Aided Design and 
Applications, 16(3), 2019, 478-495. https://doi.org/10.14733/cadaps.2019.478-495  

[13] Wang, J.; Yan, W.; Huang, C.: Surface shape-based clustering for B-rep models, Multimedia Tools 
and Applications, 7, 2020, 25747–25761, https://doi.org/10.1007/s11042-020-09252-3 

[14] Zehtaban, L.; Elazhary, O.; Roller, R.: A framework for similarity recognition of CAD models, 
Journal of Computational Design and Engineering, 3(3), 2016, 274-285, 
https://doi.org/10.1016/j.jcde.2016.04.002 

http://www.cad-conference.net/
https://doi.org/10.14733/cadaps.2023.884-897
https://doi.org/10.1016/j.cad.2006.08.001
https://doi.org/10.1115/DETC2019-98272
https://doi.org/10.1007/978-3-030-50426-7_38
https://doi.org/10.1016/j.cad.2014.03.005
https://doi.org/10.1177/1687814015615044
https://doi.org/10.3390/sym13040683
https://doi.org/10.1016/0278-6125(95)98899-H
https://doi.org/10.1016/S0010-4485(02)00093-3
https://doi.org/10.14733/cadaps.2019.478-495
https://doi.org/10.1007/s11042-020-09252-3
https://doi.org/10.1016/j.jcde.2016.04.002

