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Introduction: 
In physiotherapy, hand splints are frequently used to immobilize and support certain parts of a patient's 
hand that have been injured. At present, these splints are made from thermoplastics and require the 
physical presence of the patient for the molding process. One possible splint fabrication alternative 
could involve 3D scanning and printing. In this approach, the splint design process would start with a 
scan of patient’s hand and would end with splint fabrication by means of additive manufacturing 
approaches. These solutions can help promote the growth of telemedicine, where in-person visits are no 
longer necessary or at least they are no longer mandatory [1]. However, physiotherapists may not have 
experience with computer-aided design (CAD) software, thus making it challenging for them to create 
the required customized splints. While automated splint generation has been attempted, this approach 
has typically relied in the past on commercial CAD software, a tool that might be difficult to use for 
non-technical users [2]. 

Building on this, the main objective of this study was to create a user-friendly, linear, and standalone 
custom parametric CAD solution that can automatically generate hand splints based on a few user-
specified parameters and without the need for external CAD software libraries. The software developed 
for this purpose can generate hand splints with different parameters and with minimal user 
involvement. 

Interactive Design Process: 
The software was designed with a straightforward, step-by-step process that guides the user through 
the splint creation process. To begin, the user chooses an STL file, which is a 3D scan of the hand. These 
scans can be obtained using high-end systems or lower-cost scanners, which have been shown to provide 
accurate results [3]. After selecting the STL file, the user must verify the model's scale and align it with 
the coordinate system floor, a step that can be completed either automatically or manually. After that, 
the user has to specify three cutoff planes for the model. These planes rely on thumb, wrist, and finger 
positions. User also needs to choose the splint's offset tolerance and thickness, as well as the edge 
smoothing mode. In the trimming stage, the user must specify at least four points for the splint's outline 
and can add additional points and control the tangency of the Bezier curves applied to the splint model. 
The radius of the splint ventilation holes, their vertical or horizontal number and position can also be 
controlled by the user. Finally, the model is thickened and customization options such as stamping or 
extruding text can be added to the splint (Fig. 1).  

Design Tool Workflow: 
The entire application was developed from scratch. Its overall functionality is presented in Fig. 2. The 
user interface and interaction code were implemented using C#, while high-performance code was 
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written in C++. Platform invokes and direct pointers were used to improve the interoperability process 
in the C# code while OpenMP was used for parallelization on the C++ side. A custom-built OpenGL library 
was used for 3D rendering and Windows Forms were used. Advanced coding techniques were employed 
to enhance performance on the C++ side, particularly for fast model rebuilds. The interaction was 
achieved through either ray-casting or a spare framebuffer in which each pixel represented the ID of the 
rendered object and could be accessed through a mouse click. The program consisted of only an 
executable and two dynamic link library files, and could be run independently without the need for any 
additional software. 
 

 

 
 

Fig. 1: Stages of the interactive splint design process: reverse engineering of the hand geometry,  
hand geometry alignment, splint surface trimming, splint geometry completion, volume addition.  

 

 
 

Fig. 2: Application workflow.   

Curvature-Based Hand Feature Detection: 
To streamline the splint generation process, an automated feature detection algorithm was developed to 
automatically detect and align features of a hand scan. This decreases the required user input to generate 
a splint, so that an entire splint will be generated by pressing one button on the interface. The algorithm 
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relies on angles between neighboring triangles to classify high and low curvature regions. The algorithm 
processes each triangle and flags all touching triangles that are within a specific angle as long as they 
touch the other flagged triangles. After that, the total area is computed and compared with a minimum 
area that is preset. If the computed area is bigger then all analyzed triangles are flagged on a global 
buffer. Finally, the resulting triangles are grouped into touching regions. The resulting groups are then 
used as reference points - such as average positions or surface normals - to build alignment matrices or 
to determine positions for plane cutoffs (Fig. 3). This algorithm is generally used to target large flat areas 
that can be used to determine the back of the hand. Side alignment can be achieved by using a filter on 
starting triangles to restrict the normal direction of the surface thus implying that only side-facing 
triangles are used as starting points for search. 
 

 
 

Fig. 3: Using high and low curvature detection for hand feature extraction. 

Surface Lofting: 
The thickening and offsetting of triangular meshes is restricted by geometry, so a surface loft is built 
between the wrist and finger cutoff planes. This lofting is also crucial for grid data powered automated 
hole positioning and trimming line creation. Intermediate planes are constructed by interpolating 
between start and end planes, with the thumb hole being closed off. The thumb cutting plane is slightly 
offset to provide a buffer between the grid data and the pre-thickened mesh in order to avoiding floating 
point and smoothing errors. These planes are used to slice the model and generate outlines, which are 
aligned for consistent winding. A second centerline cutting plane perpendicular to all outlines is created, 
intersected with previously-generated outlines to align their starting vertices with the alignment path. 
Finally, all paths are divided into 50 segments, resulting in grid data that is smoothened to remove sharp 
edges. The entire process is depicted in Fig. 4. 
 

 
 (a) (b) (c) 
 

Fig. 4: Surface lofting: (a) interpolated slice lines, (b) resulting grid data and (c) raw mesh triangles. 

Mesh Trimming: 
All instances of mesh slicing use similar algorithms to perform cuts on a mesh and all cutting operations 
are completed before thickening. Planar slicing utilizes linear systems to determine the vertices of a 
triangle that lie on the undesirable side of the system. This information is then used in conjunction with 
XOR patterns to determine what edges of the triangle should be taken into consideration during line-
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plane intersections. Non-planar cutting operations utilize custom algorithms to prevent triangle vertices 
from inadequately falling on other triangle edges, thus avoiding false edge detections.  
The mesh cutting process involved two approaches: projected polygon cutting and quad cutting. The 
projected polygon cutting algorithm projected a cutline path onto the triangle by intersecting the triangle 
with the cutting segment and vice-versa. The resulting paths were then compared to the edges of the 
triangle and processed through a winding algorithm to identify the individual polygons that made up 
the cut. These polygons were then converted to triangles by means of a polygon to triangle converter. 
The triangles were examined to determine if they were located inside the cut polygon and if they were, 
the entire polygon was disregarded. This process is illustrated in Fig 5. 

The mesh trimming algorithm operates similarly to the mesh cutting algorithm, with two main 
differences. Firstly, the planar slicing code employed slicing quads instead of projecting a cut polygon. 
Secondly, the triangle rejection method was based on area propagation, rather than on triangle's position 
within the polygon. 
 

 
(a) (b) (c) (d) (e) (f) 

 
Fig. 5: Mesh cutting phases: (a) cut path projected against triangle, (b) paths placed on triangle, (c) paths 
intersected to build polygons, (d) polygons split into triangles, (e) triangles are filtered out based on 
centroids, and (f) end result.  

Splint Geometry: 
This phase involves removing a central piece from a splint and creating slots and breathability holes in 
the mesh. The process begins with mesh trimming, a process that involves wrapping a 2D Bezier curve 
onto 3D mesh grid data as specified by the user. The Bezier paths are constructed from user-defined 
points, with tangency direction determined by the positions of neighboring points, and tangency 
controlled by the user. The points are transformed into a 2D plane and divided by a triangle intersection 
grid that splits the Bezier paths along mesh triangle edges. The translated points are then interpolated 
onto the mesh, and intersection quads are generated to cut the back of the mesh (Fig 6). Cutting is 
performed after mesh trimming is completed. 

The position of the breathing holes was determined by interpolating the X and Y coordinates of the 
hole center onto the splint mesh grid. The X and Y coordinates were calculated either by using a specified 
horizontal/vertical hole count or by means of a target hole spacing mode. Splint breathing holes were 
only placed if they fell within the boundaries of the unwrapped 2D Bezier curves. The position of the 
strapping slots was determined by means of a perpendicular plane thus allowing for the specification 
of an exact distance from the edge. 

Volume Addition: 
The last stage involves two offset procedures. The first offset is used to create a gap between the inner 
surface of the splint and hand skin add thickness while the second one is used to add thickness/volume 
to the mesh/surface. The second offset is mandatory for additive manufacturing purposes. The edge 
finder tool is utilized to identify all edges of the 3D surface before any offset is made. After thickening 
the mesh, the contour gap present between the inner and outer surface is filled. If a smoother contour 
edge is desired, a Bezier dome can be used instead of flat surface filler (Fig. 7). The offset process 
involves computing the average normal of the triangles that share a vertex and shifting the vertex by a 
specified distance. This technique leads to smooth surfaces that do not have self-intersections because 
the mesh was already smooth prior to the supplementary smoothing step [4]. 
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(a)  (b) (c)  

 
Fig. 6: Mesh trimming and cutting: (a) adjustable points, (b) cutting quads and (c) final mesh. 

 

 
(a)  (b) (c)  

 
Fig. 7: Mesh thickening phase: (a) pre-smoothening edges, (b) post-smoothening edges and (c) virtual 
splint fitting test.  

Conclusions: 
The application of a customized splint building software has proven to be capable of constructing tailor-
made splints in a quick and efficient manner. With just a few clicks, the splint generator application can 
produce customized splints. The software can also be adjusted and enhanced to support a wider range 
of splint types while still remaining user-friendly. This eliminates the need for physiotherapists to 
acquire CAD expertise for splint modeling purposes. As a result, the developed software tool could 
significantly enhance patient’s experience in a sense that - unlike the conventionally-fabricated 
thermoplastic molded splints – customized 3D printed splints can be fabricated to more precisely match 
the unique configuration of each patient’s hand.  

Acknowledgement 
This research was partially funded by the Natural Sciences and Engineering Research Council of Canada 
(NSERC) and Mitacs Canada.

References: 
[1] Bashshur, R.; Doarn, C.-R.; Frenk, J.-M.; Kvedar, J.-C.; Woolliscroft, J.-O.: Telemedicine and the 

COVID-19 pandemic, Lessons for the future, Telemedicine and e-Health, 26(5), 2020, 571–573. 
https://doi.org/10.1089/tmj.2020.29040.rb  

http://www.cad-conference.net/
https://doi.org/10.1089/tmj.2020.29040.rb


270 
 
 

 

Proceedings of CAD’23, Mexico City, Mexico, July 10-12, 2023, 265-270 
© 2023 CAD Solutions, LLC, http://www.cad-conference.net 

 
 

[2] Li, J.; Tanaka, H.: Rapid customization system for 3D-printed splint using programmable modeling 
technique – a practical approach, 3D Printing in Medicine, 4, 2018. 
https://doi.org/10.1186/s41205-018-0027-6  

[3] Yang, Y.; Xu, J.; Elkhuizen, W.-S.; Song, Y.; The development of a low-cost photogrammetry-based 
3D Hand Scanner, HardwareX, 10, 2021. https://doi.org/10.1016/j.ohx.2021.e00212  

[4] Qu, X.; Stucker, B.: A 3D surface offset method for STL‐format models, Rapid Prototyping Journal, 
9(3), 2003, 133–141. https://doi.org/10.1108/13552540310477436  

http://www.cad-conference.net/
https://doi.org/10.1186/s41205-018-0027-6
https://doi.org/10.1016/j.ohx.2021.e00212
https://doi.org/10.1108/13552540310477436

