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Introduction:

Although there is a rich assortment of public 3D datasets of polygon meshes and surface point clouds
(e.g., AIM@Shape [1], ModelNet40 [11], Princeton Shape Benchmark [12], Thingi10k [10], and so on),
there are few public 2D datasets of smooth curves or their point clouds. As a modest contribution to
curve datasets, this paper considers the construction of a dataset of 2D point clouds of curves derived
from leaves. We are interested in datasets derived from real organic shapes, and we are particularly
interested in developing a curve dataset with interesting tangent space structure (e.g., bitangents), to
test shape modeling algorithms (e.g., we were originally motivated to study this problem through our
study of computing bitangents [5]), and leaves o�er this rich structure.

The curve dataset will be segmented from leaf images. A second goal of this study is the development
of the simplest possible robust segmentation algorithm for extracting point clouds from leaf images, and
other similar bimodal images. Standard approaches can fail, despite the simplicity of these images.

Leaf images and leaf clouds:

Consider a leaf image of a post oak, from the Cleared Leaf Image Database [2] (Figure 1). We are
interested in building a smooth curve from such a leaf shape, as test data for curve algorithms, especially
algorithms that bene�t from the interesting tangent space of these organic shapes. Since it is well
understood how to build a smooth curve from a point cloud, the problem reduces to building a good
point cloud of these leaf boundaries.

Fig. 1: Left: Image of post oak leaf. Right: A point cloud extracted from this image.

Figure 1 shows the point cloud extracted from this image by the algorithm presented in this paper.
This appears to be a simple variant of the image segmentation problem, but standard algorithms in
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OpenCV [7], a popular computer vision library, fail on this image (Figure 2). The solution is to address
noise and scale in these images in creative ways, which is the focus of this paper.

Fig. 2: Left: A point cloud extracted from the post oak image using the Otsu thresholding algorithm
[8] in OpenCV. Right: A point cloud extracted from the post oak image using the adaptive thresholding
algorithm in OpenCV.

Figure 3 illustrates another image/cloud pair developed by our algorithm, from an image of a red
oak. Consider the gray-level histogram of this image, also in the �gure. The image is noisily bimodal: an
image with a foreground object of a noisily uniform intensity against a background of a noisily uniform
intensity. Noise smears the grayscale values of the foreground and background into two noisily Gaussian
hills, due to variations in pigment and lighting. The correct threshold for threshold segmentation lies in
the valley between the two hills, but the computation of this threshold is slippery, as illustrated by the
failure of two classical thresholding algorithms at �nding a good threshold. We have found two insights
to �nding a good threshold, using two classic approaches to combating noise: Gaussian blurring and scale
space.

Fig. 3: Left: Image of red oak leaf.
Left Middle: Gray-level histogram of this image.
Right Middle: Bitmap extracted from this image by thresholding with our threshold.
Right: Point cloud extracted from this image.
(The point cloud is �ipped upside down from the original image.)
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Finding the threshold:

The threshold of interest lies in the valley between the two hills in the gray-level histogram, one (called
the alpha hill) associated with the global maximum, and the other (called the beta hill) associated with
a local maximum (but a global maximum after suppression of the alpha hill). One approach to �nd the
alpha hill is to �nd the global maximum M of the histogram (intensity bin with most pixels) and walk out
from the maximum while strictly dropping, de�ning a neighbourhood of M. However, due to noise, this
is ine�ective, since the alpha hill will not extend far enough. The �rst insight is that a better approach
is to walk out from the max M while the binsize is larger than a 'zero' binsize z. Intuitively, any bin
smaller than z would be empty but for noise. This reduces the problem to de�ning the 'zero' binsize z.
Once z is de�ned, the alpha hill may be de�ned by the nonzero bins surrounding the global max, and
the beta hill by the nonzero bins surrounding the secondary max.

The second insight is to �nd z using the blurred histogram, not the original histogram: in particular,
z is de�ned by walking out from the global max of the blurred histogram, in both directions, while
the binsize is monotonically dropping, and de�ning the zero binsize as the minimum binsize of this
neighbourhood (necessarily one of the two boundaries of the neighbourhood). By blurring the histogram,
the hill becomes truly monotonic. Once the zero binsize is de�ned, it is used to de�ne the alpha hill in
the original histogram, by walking out from the maximum while the binsize is greater than z. The beta
hill is de�ned similarly after suppressing the beta hill. So the zero is de�ned by a monotonic walk in a
blurred histogram, while the hill is de�ned by a zero-constrained walk in the original histogram.

We use a Gaussian kernel of width 9 to blur the histogram (viewed as a 1d signal) by convolution.
The width of this Gaussian kernel is a parameter that can be manipulated by the algorithm, but this
value has worked for the leaf images we have considered.

Once the alpha and beta hills are de�ned, the desired threshold is the midpoint intensity between the
two hills. If the image is bimodal (foreground object against background), the two hills will not overlap,
the threshold bin will be essentially empty (but not empty: see Figure 3), and indeed all of the bins
outside the two hills should be essentially empty: this may be used to diagnose if an image is bimodal
and the algorithm of this paper applies. All of the leaf images that we have considered (cleared leaves)
are bimodal in this sense.

Fig. 4: Left: Image of post oak leaf (#11 in CLDB Quercus stellata group).
Middle: Bitmap extracted by thresholding.
Right: Point cloud extracted from this bitmap by contouring and decimation.
(This point cloud is �ipped upside down from the original image.)

Once the threshold is de�ned, a bitmap is computed using binary thresholding (Figure 4), and this
bitmap is contoured using Suzuki/Abe's contouring algorithm [9], yielding a collection of contours. Be-
cause of noise, many contours are found. For example, contouring yields 65 contours for the post oak leaf
of Figure 4. But most of these contours are very short, and the longest contour is always the leaf. This
longest contour is then decimated using Douglas-Peucker's algorithm [3], yielding a better point cloud for
curve interpolation. For example, before decimation, the longest contour of the post oak leaf in Figure 4
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has 976 points but 167 points after decimation, yielding the point cloud shown in the �gure. The amount
of decimation is a parameter of our algorithm, but we have found an epsilon of 1 to work well. Note that
decimating the longest contour, and ignoring the short contours, further removes the noise inherent to
the leaf segmentation problem.

Another adjustment is important for some images: resizing. Very large images, as many of the leaf
images are, have too much detail. The algorithm is improved by shrinking large images so that their
smaller dimension is 400. For example, the leaf image of Figure 1 has shape (1328, 2388). If the algorithm
is applied to this image, 9784 contours are generated by contouring its bitmap. If the algorithm is applied
to the resized image (shrunk to shape (400, 719)) 49 contours are generated. Resizing the image is a form
of smoothing that further reduces noise.

Results:

The segmentation algorithm of this paper has been implemented in C++ using OpenCV [7]. It generates
point clouds in PLY format, a standard mesh format that has the �exibility to be used for point clouds
and has good readers/writers (e.g., Sharp's hapPLY [4]). We have built leaf clouds from 168 leaf images
of the Cleared Leaf Image Database [2]. Two more examples are shown in Figure 5. We have also found
other leaf images outside the CLDB dataset. Space prevents a fuller treatment of these other datasets,
and their statistics.

Fig. 5: Top row: Spotted oak leaf and its point cloud. Bottom row: Overcup oak leaf and its point cloud.
(Point clouds are �ipped upside down relative to image.)

Conclusions and future work:

We have built a dataset of leaf point clouds, which can then be used to build curve datasets for testing
shape modeling algorithms on organic datasets with interesting tangent spaces (locally and globally, such
as bitangents). The algorithm can be applied to any bimodal leaf image (e.g., cleared leaves), and has
been successfully applied to 168 leaves of the Cleared Leaf Image Database. We hope that this resource
will be useful to the research community as they compare and benchmark curve algorithms in shape
modeling. It can be extended to build more curve datasets from similar images.

The success of the algorithm depends on handling noise carefully: noise (or unnecessary detail) in
the image (by resizing), noise in the histogram (by blurring), noise in the 'zero' bin of a histogram (by
computing this degenerate binsize by falling down monotonically in the blurred histogram), noise in the
contouring algorithm (by eliminating short contours), and noise in the �nal leaf contour (by decimating).
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A direction for future work is to apply this algorithm to other bimodal image classes, and to explore
other leaf image datasets, such as the TensorFlow plant leaves dataset.
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