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Introduction:

The geometric modeling of many objects, ranging from simple household items to complex aesthetic
designs, involves non-quadrilateral free-form surfaces. In CAD systems these are generally represented
by one of the following methods (see also Fig. 1):

� Trimming takes a larger four-sided patch and trims it at the speci�ed boundaries. The connection
to adjacent surfaces will generally be inaccurate (even positionally), and inherent symmetries of the
multi-sided surface may not be reproduced.

� Splitting divides the n-sided area into subpatches. The actual choice of subdivision a�ects surface
quality, and maintaining G1 or G2 continuity along the subdividing curves as the patch is modi�ed
can be di�cult.

Fig. 1: Representing a 6-sided surface with trimming (left) and splitting (right).

In contrast, there are non-standard representations allowing an arbitrary number of sides without the
drawbacks mentioned above. These are often called trans�nite interpolation surfaces, as they reproduce
the boundaries exactly, and can also ensure smooth connections to adjacent patches with G1 or higher
continuity.

Some of these can be regarded as multi-sided generalizations of the Coons patch, in the sense that the
surface depends only on the positional and cross-derivative constraints at the boundaries. This is usually
achieved by blending together ribbon surfaces interpolating some of the boundaries, so we will call these
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ribbon-based surfaces. Their strong point is also their weakness: since the geometry depends only on the
boundaries, there is little control over the surface interior.

There are also control-point�based representations. These have �ne-grained interior control, but are
generally limited to (rational) polynomial boundaries.

The aim of this paper is to propose a genuinely multi-sided surface representation that (i) can handle
any kind of boundary curves, (ii) allows connection to adjacent patches with G1 or higher continuity, and
(iii) has good control over the interior. In the following we will review some of the more in�uential ribbon-
and control-point�based formulations, and show how these can be used to generate a patch satisfying all
of the above requirements.

Preliminaries:

Almost all multi-sided surface formulations are de�ned over a 2D domain. Its shape can be varied,
but often it is a regular n-sided polygon. Points inside the domain are then mapped to some sort of
local coordinates depending on the actual patch equation. Here we show a set that can be described by
generalized barycentric coordinates [1] and �ts all schemes reviewed in this section.

Given a point in the domain and its generalized barycentric coordinates {λi}, we de�ne

si(λ1, . . . , λn) =
λi

λi−1 + λi
, di(λ1, . . . , λn) = 1− (λi−1 + λi) (2.1)

with cyclic indexing. The side parameter si runs from 0 to 1 as we follow the ith edge of the domain
(connecting the (i− 1)st and ith vertices), giving 0 and 1 on the (i− 1)st and (i+1)st edges, respectively.
The distance parameter di vanishes at the i

th edge and increases monotonically, reaching 1 at the non-
adjacent sides. Figure 2 shows constant parameter lines of k

10 (k = 0 . . . 10). Note that si, di ∈ [0, 1] and
for a point on the ith side di−1 = si = di+1.

Fig. 2: Parameterization of a 5-sided domain, showing contours of Wachspress coordinates λi associated
with the bottom-right corner (left) and the (si, di) system associated with the bottom side (right).

Ribbon-Based Surfaces. A ribbon Ri is a quadrilateral surface interpolating the ith boundary curve, and
also satisfying the associated cross-derivative constraints. We can blend di�erent ribbons together using
a variation [2] of Shepard's inverse distance weights (Li):

S(u, v) =

n∑
i=1

Ri(si, di)Li(d1, . . . , dn) =

n∑
i=1

Ri(si, di) ·
1/d2

i∑n
j=1 1/d

2
j

. (2.2)

Here (u, v) is a point in the 2D domain, si is a shorthand for si(λ1(u, v), . . . , λn(u, v)) and similarly for di.
This equation cannot be evaluated at the boundaries in this form, but this can be solved by multiplying

Proceedings of CAD'23, Mexico City, Mexico, July 10�12, 2023, 26�30
© 2023 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


28

both the numerator and denominator of Li by
∏n

k=1 d
2
k. It is easy to see that the following properties

hold for a point on the ith boundary:

Li = 1, Lj = 0 (j 6= i), L′k = 0 (∀k), (2.3)

where the derivative is taken in an arbitrary parametric direction. A singularity remains, as the above
equations specify both 0 and 1 for a corner point, but the limit of the sum exists. Increasing the exponents
in Li allows for connecting to adjacent surfaces with G

2 or higher continuity. Figure 3 shows a schematic
depiction of this approach.

Fig. 3: Inverse distance weighted patch. Left: blending scheme (1 at one side and 0 on all others); Right:
two linear ribbon surfaces.

Control-Point�Based Surfaces. A recent control-point�based surface representation is the Generalized
Bézier or GB patch [3], which uses weighted Bernstein polynomials to satisfy the boundary constraints.
Figure 4 shows its control structure and the weighting scheme.

Fig. 4: Control net of the Generalized Bézier patch.

The black frames show which control points belong to the bottom and right-hand sides; some belong
to both, and these are multiplied by both of the associated blending functions. The patch is de�ned as

S(u, v) =

n∑
i=1

p∑
j=0

b p−1
2 c∑

k=0

Pi,j,k · µi,j,k(d1, . . . , dn)B
p
j (si)B

p
k(di) +P0(1−BΣ(u, v)), (2.4)
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where p is the degree, Pi,j,k is the jth control point in the kth row associated with the ith side, and Bp
i

is the ith Bernstein polynomial of degree p. The µi,j,k functions denote the weights shown in Fig. 4 with

αi =
d2
i−1

d2
i−1 + d2

i

, βi =
d2
i+1

d2
i + d2

i+1

. (2.5)

The blends in the �rst term of Eq. (2.4) do not sum to 1; the second term associates the `weight de�ciency'
with the central control point (P0), i.e.,

BΣ(u, v) =

n∑
i=1

p∑
j=0

b p−1
2 c∑

k=0

µi,j,k(d1, . . . , dn)B
p
j (si)B

p
k(di). (2.6)

This patch behaves at its boundaries (in a G1 sense) as a quadrilateral Bézier surface created with
the associated control points. Increasing the exponents in Eq. (2.5) allows for higher order interpolation.

Hybrid Patch:

The proposed surface formulation takes Eq. (2.4) and replaces the outer two control rows with linear
ribbons multiplied by the weight sum of the two rows, which is a singular blending function (L∗i ) similar
to Li in Eq. (2.2):

S(u, v) =

n∑
i=1

 p∑
j=0

b p−1
2 c∑

k=2

Pi,j,k · µi,j,k(d1, . . . , dn)B
p
j (si)B

p
k(di)+Ri(si, di)L

∗
i (u, v)

+P0(1−BΣ(u, v)),

(2.7)
with

L∗i (u, v) =

p∑
j=0

1∑
k=0

µi,j,k(d1, . . . , dn)B
p
j (si)B

p
k(di). (2.8)

The main di�erence between Li and L∗i is that the latter does not sum to 1 in the interior of the
domain, which leaves weight for the control points�the same weight they would have in a GB patch.

Fig. 5: Construction of the hybrid patch. Left: blending scheme; Middle: GB patch; Right: hybrid patch.

Replacing three control rows and increasing the exponent to 3 in Eq. (2.5) can interpolate the ribbons
in a G2 sense. In this case we need curved ribbons, which can be inherited from adjacent surfaces, or
generated from a curve network.

The new patch representation is an improvement over the one in Eq. (2.2), as it adds interior control,
and does not exhibit the large curvature variations that often appear near the boundaries with the
steeply falling inverse distance weights. It is also more general than the GB patch, since it is not limited
to polynomial boundaries; in fact, it can handle procedural boundary constraints, as well.
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In Figure 6, a 5-sided patch with B-spline boundaries is modi�ed by moving its control points (the
ribbons remain unchanged), resulting in a much more natural isophote line distribution.

Fig. 6: Modi�cation of a hybrid patch, showing isophote lines.

Figure 7 shows a �ve- and a six-sided hybrid patch. At the shared boundary a rotation-minimizing
frame de�nes the normal fence both surfaces are perpendicular to.

Fig. 7: Two patches connected with G1 continuity; mean curvature with common normal fence (left) and
contouring (right). Full red/blue colors are set to ±0.015; the bounding box diagonal is 350 units long.

Conclusions:

We have proposed a new multi-sided surface formulation that combines the advantages of ribbon- and
control-point�based patches. It can handle arbitrary boundary constraints, while also providing �ne-
grained control over the surface interior.

The full paper will include a review of other approaches to interior control, a discussion on limitations
and the default positioning of control points, as well as more complex examples.
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