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Introduction: 
Finite element (FE) analysis requires mesh generation as a preprocess, which partitions a Boundary 
Representation (B-Rep) computer-aided design (CAD) model into FE meshes. Because mesh quality 
significantly affects analysis accuracy, manufacturers specify company-internal mesh generation rules 
for some types of FE features on CAD models, such as bosses and ribs, including free-form surfaces 
(Figure 1). However, at present, the recognition of the FE features from CAD models relies heavily on 
human eyes and hands, making it time-consuming, and error-prone. Therefore, a reliable, and versatile 
FE feature recognition method from CAD models is strongly required for efficient high-quality mesh 
generation. 

Recently, several deep-neural-network (DNN)-based methods have been proposed for feature 
recognition from CAD models. They have an advantage in that they do not require algorithm design 
specific to each feature type, unlike classical methods. However, most DNN-based methods approximate 
input CAD model geometries with voxels [9] or point clouds [7] as an input of DNNs, causing 
discretization loss in model resolution or an increase in the data size, which results in more significant 
memory consumption or longer training time. To resolve these issues, other DNN-based feature 
recognition methods have been proposed in recent years [3, 5] that use “graphs” as an input of the DNN, 
which take advantage of high compatibility with standard B-Rep CAD models. Nevertheless, those 
methods also have issues. First, the recognition significantly depends on the model poses. Second, the 
recognition method targeted the machining features or geometric modeling procedures and was not 
tested with FE features that included free-form surfaces.  

In this study, we propose an FE feature recognition method from a B-Rep CAD model using a graph 
neural network (GNN), which has a recognition ability invariant to model rotation or translation. The 

 
 

Fig. 1: Typical examples of mesh generation rules for features: (a) rib case and (b) boss case [3]. In a rib, 
mesh vertices are aligned with the ridge curve. In a boss, the vertices are positioned concentrically 
around the medial axis. 
 

(a)  (b)  
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proposed method comprises a graph construction method with descriptors invariant to the translation 
or rotation, a neural network structure used for feature recognition, and data augmentation (DA) 
techniques for robust recognition. We tested our method with the original dataset of FE features, 
including bosses and ribs, and compared its performance with that of an existing method [1] using GNN 
[3,5], similar to ours. 

GNN-Based FE Feature Recognition Method: 

Overview 
Figure 2 shows the recognition pipeline of the proposed method. The first step converts B-Rep CAD 
model data into a face adjacency graph (FAG) with descriptors. The FAG is a graph in which B-Rep faces 
and edges are represented as nodes and links, respectively. Each node and link in FAG have its 
descriptors, a multidimensional vector encoding the corresponding face or edge geometry. In the second 
step, the FAG is input into a GNN that classifies the labels of each node. The GNN is trained in advance 
with CAD models comprising FE features whose faces are labeled with feature labels. In the last step, 
the estimated face feature labels are extracted from the GNN output and reflected in the original CAD 
model. 

Descriptors on the FAG 
Our method encodes the topology and geometry of a B-Rep CAD model in terms of FAG connection 
relations and descriptors on the FAG nodes and links, respectively. To achieve pose-invariant feature 
recognition, we defined the following descriptors invariant to translation and rotation. Moreover, 
considering the class of geometries to be recognized, the descriptors that can discriminate the 
geometries of free-form surface and curve equations are included in the B-Rep CAD model. 

The node descriptor 𝑭𝑛 encodes the geometry of a face. It comprises the following two descriptors 
𝑭𝑆𝐼 and 𝑭𝑂𝐵𝐵  calculated from sampled points on the face. 

1) Shape Index distribution 𝑭𝑆𝐼: 𝑭𝑆𝐼 represents a statistical distribution of the Shape Index [4] 𝑆𝐼(𝑝) at 
a sampled point 𝑝 on a face. 𝑆𝐼(𝑝) is calculated with Eqn. (1), from principal curvature 𝜅1, 𝜅2 (𝜅1 ≥ 𝜅2) 
at 𝑝, and ranged from −1 to 1, except for the case that 𝑝 is on planes. 

𝑆𝐼(𝑝) =
𝜋

2
tan−1

𝜅2 + 𝜅1

𝜅2 − 𝜅1
, (1) 

The descriptor 𝑭𝑆𝐼 is a normalized histogram of 𝑆𝐼(𝑝) over the face and is defined by Eqns. (2) and 
(3) with 𝑙 as the number of intervals (we used 𝑙 = 7): 

𝑭𝑆𝐼 =
1

∑ |𝐴𝑖|𝑙
𝑖=0

[|𝐴0|, |𝐴1|, ⋯ , |𝐴𝑙|]𝑇 , (2) 

𝐴𝑖 = {
{𝑝 |  − 1 +

2𝑖

𝑙
≤ 𝑆𝐼(𝑝) ≤ −1 +

2(𝑖 + 1)

𝑙
}  (𝑖 = 0, ⋯ , 𝑙 − 1)

{𝑝 | 𝑝 is on a plane}  (𝑖 = 𝑙)

. (3) 

 

Fig. 2: The proposed FE feature recognition pipeline. 
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2) Oriented bounding box (OBB) aspect ratio ( 𝑭𝑂𝐵𝐵 ): 𝑭𝑂𝐵𝐵  is the proportions of three edge 
lengths 𝑙1, 𝑙2, 𝑙3 (𝑙1 ≥ 𝑙2 ≥ 𝑙3) of the OBB that envelops the points sampled on a face: 

𝑭𝑂𝐵𝐵 =
[𝑙1, 𝑙2, 𝑙3]𝑇

‖[𝑙1, 𝑙2, 𝑙3]𝑇‖
. (4) 

Moreover, the link descriptor 𝑭𝑙 represents the angle relation between two adjacent faces connected to 
an edge. The following two types of angles are adopted for the link descriptor: local face angle 𝐹𝑙𝑎 and 
global face angle 𝐹𝑔𝑎. Similar to the node descriptor, the link descriptor is calculated from the point 

sampled on the edge corresponding to a link. 

3) Local face angle (𝐹𝑙𝑎): 𝐹𝑙𝑎 is an average of normalized signed angles between the normal vectors of 
the adjacent faces at the points sampled on an edge. The signed normalized angle 𝜃𝑙𝑎(𝑞) at a point 
𝑞 is defined as follows: 

𝜃𝑙𝑎(𝑞) =
1

𝜋
sgn ((𝒏𝑖 × 𝒏𝑗) ⋅ 𝒕𝑖) cos−1(𝒏𝑖 ⋅ 𝒏𝑗) , (5) 

where 𝒏𝑖 , 𝒏𝑗  denote unit normal vectors of faces 𝑓𝑖 , 𝑓𝑗  adjacent to the edge, and 𝒕𝑖  denotes a unit 

tangent vector of the corresponding half edge belonging to the face 𝑓𝑖. 𝐹𝑙𝑎 is calculated by averaging 
𝜃𝑙𝑎(𝑞) over the sampled point set 𝑄 on the edge as follows: 

𝐹𝑙𝑎 =
1

|𝑄|
∑ 𝜃𝑙𝑎(𝑞)

𝑞∈𝑄

. (6) 

4) Global face angle (𝐹𝑔𝑎): 𝐹𝑔𝑎 is a normalized angle between the averaged normal vectors 𝒏̅𝑖 , 𝒏̅𝑗 on 

two adjacent faces 𝑓𝑖 , 𝑓𝑗 connected to an edge. 𝒏̅𝑖 is calculated from the normal vectors at the sampled 

points on 𝑓𝑖. 𝐹𝑔𝑎 is calculated as follows: 

𝐹𝑔𝑎 =
1

𝜋
cos−1(𝒏̅𝑖 ⋅ 𝒏̅𝑗) . (7) 

Node classification by GNN 

Figure 3 shows the GNN structure used for the node classification for feature recognition. As shown in 
the figure, the network comprises two phases: convolution and multilayer perceptron (MLP). The 
convolution phase comprises three “MLP & Conv” layers. The layers perform three operations. First, each 
node/link descriptor is inputted into the affine layer, activation function, and batch normalization layer 
sequentially. Second, node descriptors are convoluted into link descriptors as follows: 

𝒆𝑖𝑗
′ = 𝜎 (BN (𝑾(𝒙𝑖 ⊕ 𝒙𝑗 ⊕ 𝒆𝑖𝑗))) , (8) 

where 𝒙𝑖 denotes the descriptor of node 𝑖 before the operation, 𝒆𝑖𝑗 and 𝒆𝑖𝑗
′  denote the descriptors before 

and after the operation of the link between node 𝑖  and 𝑗 , respectively, BN  denotes the batch 
normalization layer, 𝜎 denotes the activation function, ⊕ denotes vector concatenation, and 𝑾 denotes 

 

Fig. 3: GNN structure used for node classification. Each square describes the descriptor size attached to 
nodes and links. 𝑁  and 𝐸  denote the numbers of nodes and links, respectively, 𝑁𝑜𝑑𝑒𝐷𝑒𝑠𝑐𝑖𝑛  and 
𝐿𝑖𝑛𝑘𝐷𝑒𝑠𝑐𝑖𝑛 denote the size of input descriptors of nodes and links, respectively, and 𝐷𝑒𝑠𝑐𝑜𝑢𝑡 denotes the 
output size of node descriptors. 
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learning parameters. Finally, the descriptors are convoluted between adjacent nodes using graph 
attention networks as follows [8]: 

𝒙𝑖
′ = 𝜎 ( ∑

exp (𝜎(𝑾𝑛𝒙𝑖 ⊕ 𝑾𝑛𝒙𝑗 ⊕ 𝑾𝑒𝒆𝑖𝑗))

∑ exp(𝜎(𝑾𝑛𝒙𝑖 ⊕ 𝑾𝑛𝒙𝑘 ⊕ 𝑾𝑒𝒆𝑖𝑘))𝑘∈𝒩𝑖𝑗∈𝒩𝑖

𝑾𝒙𝑗) , (9) 

where 𝒙𝑖
′ denotes the descriptor of node 𝑖 after the operation, and 𝑾𝑛, 𝑾𝑒 denote learning parameters. 

Data Augmentation 

To improve recognition robustness, we conducted DA in every training epoch. As DA, we removed links 
of the input FAG and overwrote descriptor elements to 0 with a certain probability (0.15 in our 
experiment). DA was only performed on the training dataset and not on the validation dataset. 

Case Study: 

Dataset 

We created a dataset “basic dataset” comprising representative FE features—boss and rib—for 
performance evaluation. As shown in Fig. 4 (a), the dataset includes the CAD models of simply shaped 
17 boss and rib types. We varied the sizes of features such as radius or height to create a training dataset 
including 32,940 model instances. As shown in Fig. 4 (b), every face of a feature in the training dataset 
has seven labels: “BossTop,” “BossSide,” “BossHole,” “RibTop,” “RibSide,” “Fillet,” and “None.”  In 
addition, we prepared three CAD data “practical models” where bosses and ribs are arranged in 
combination to evaluate the performance of the FE feature recognition in a more practical scenario. 

Experimental Condition 
We implemented the proposed GNN-based feature recognition method using PyTorch Geometric [2] and 
Open CASCADE Technology [6], trained with the basic dataset and finally tested both with the basic 
dataset and practical models. We performed 10-fold cross-validation and compared our results with the 
recognition results of the combined method [1] of BRepNet [5] and UV-Net [3], which is a GNN-based 
feature recognition method like ours. To check the rotation invariance, the test was performed with both 
a posture similar to the training data and a randomly rotated posture.  

Result 
Table 1 summarizes the recognition performances, and Figure 5 shows an example of the recognition 
results for practical models. As shown in Table 1, our method and the comparison method showed high 
recognition performance for the basic dataset with the original pose, whereas their performance for the 
practical models was low. The reason could be that the practical models were far more complex and had 
much more interaction between bosses and ribs. Moreover, when the rotation was applied to the input, 
the performance of the comparison method degraded significantly. Meanwhile, our method did not show 
any degradation due to its rotational invariance. Finally, DA improved the performance of our method 
on the practical models by about 6%. This is because the recognition performance of input graphs with 
different topologies was improved. 

 

Fig. 4: Basic dataset: (a) 17 base models, (b) 7 face feature labels. 

(a) 
(b) 
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Conclusion: 

A novel GNN-based FE feature recognition method from a B-rep CAD model was proposed. The 
recognition performance for boss and rib features were better than that of a similar existing method, 
and it significantly outperforms in rotated models. In addition, a data augmentation method was also 
proposed that could improve the performance against datasets slightly different from the training data. 
However, there is still room for improvement in recognition performance against complex models, which 
will be achieved by changing the training dataset generation or using transfer learning. 
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Fig. 5: Recognition results of a practical model: (a) ground truth, (b) our method, (c) our method + DA. 
Each face color represents the predicted feature label, same as Figure 4. 
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