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Introduction:

The placement of the tool over the surface for 5-axis machining is challenging as it must be placed to
avoid gouging or overcutting. The tool and modeled surface involve geometry that results in complex
simultaneous transcendental equations that must be solved to get gouge-free placement. In Multipoint
machining methods (MPM) the toroidal tool touches the modeled surface (to be machined) at multiple
points of contact. There are number of methods to �nd MPM toolpaths [1, 2, 3, 4]. All these methods
involve numerical methods and use the CPU to solve the non-linear transcendental-polynomial equations.
These method of obtaining the solutions for positioning the tool over the surface are time consuming [2].
In addition, the solution results in multiple answers that satisfy the equations, but some of them gouge
the surface (at other points on the tool) and necessitate the use of a gouge checker to isolate the gouge
free solution.

The method proposed in this paper is based on a graphical model and does not require the solution of
simultaneous equations or initial guesses. The new method emulates the tool dropping on a surface [3].
The drop distance is calculated using a GPU based algorithm. The method presented here evolved from
an earlier work, where the earlier method was used for gouge checking (a minor role in tool positioning).
This gouge checking method is modi�ed to speed up its computational e�ciency and to produce 3-axis
tool positions. In addition, the GPU based tool drop method is repeatedly used with a rotation algorithm
to obtain multiple contacts between the tool and the design surface and produce gouge-free 5-axis tool
positions.

Many of these tool positioning methods use a triangular approximation for surface and tool. These
approximations impact the tool position relative to the surface. The paper studies the impact approx-
imation can have and identi�es limits to the approximations. These limits can be used as guides for
setting the accuracy of triangulation for curved surfaces.

Multi-point Method:

In the MPM method [4], positioning the tool is done in two steps. In the �rst step, the �rst point
of contact is obtained by dropping a tool over the modeled surface from a certain height atop of the
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Fig. 1: Tool Drop used for computing tilt angle.

surface. The drop distance for calculation of gouge-free tool position is computed using the GPU. The
rendering requires the de�nition of the view volume and the view window. Since the goal is accurate
tool positioning, the view direction is set along the tool axis and the view volume is set to enclose the
tool. The window size impacts the time taken to compute the tool positions and the accuracy of the
tool position. In this paper, we derive the appropriate size window to use to achieve a desired level of
accuracy.

The tool is rendered using Orthographic projection and the resulting z-bu�er is saved; a second
rendering with the same view direction and view volume is done for the surface and again the resulting
z-bu�er is saved. These two z-bu�ers are compared with each other and the minimum di�erence in z-
value or depth value gives the drop distance with which the tool is moved towards the surface to touch it
without any gouging. This drop distance concept is fast to compute, and its accuracy can be determined
based on the discretization and the world modelling parameters. After an initial drop to obtain the �rst
point of contact, the center and axis of the pseudo insert at that point of contact are obtained.

To calculate the second point of contact, the surface is rotated around the axis of the pseudo insert,
the tool is dropped onto this rotated surface, and the process is repeated until a gouge-free contact is
established between tool and surface at the second point of contact. The rotation of surface around the
axis of pseudo insert ensures that the tool maintains the contact with the surface at �rst point of contact
during the rotation.

The process is illustrated in �gure 1. Figure 1a shows the tool dropping on the surface to determine
the �rst point of contact at a height h. In �gure 1b the surface is rotated about the pseudo insert axis,
and the tool is dropped onto this rotated surface at a height h1. The surface is rotated iteratively until
a rotation angle, θ, is found where h1 = h. Rotating the surface by the angle θ results in two points of
contact as shown in �gure 1c. The surface rotation about the pseudo-insert ensures the toroidal tool axis
stays aligned with the vertical. In this method tool drop with the z-bu�er method is used repeatedly to
�nd both points of contact.

Multi-level Rendering:

Achieving the desired level of error may require a large window, resulting in large computation time.
To reduce this cost, we used a multi-leveled approach. In the Multi-level rendering approach, the torus
is rendered in two stages with lower window resolutions. In the �rst stage, the orthographic projection
is kept the same, as explained in the previous section, except the window size is reduced. The above
procedure is followed to obtain the drop distance and associated pixel position. Next the discretization
is locally re�ned around this approximate point of contact to improve the accuracy of point of contact.
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Fig. 2: Error in piecewise linear approximation to a circle, δ, where ∆x is the distance between samples,

The approximate contact point is surrounded by other points in the grid; however, the algorithm
ensures that the drop distance at these points is higher than at the approximate contact point. As both
the torus and the surface are continuous bodies, the mean-value theorem tells us that the lowest value
lies in the region surrounded by the neighboring pixels. So, both the torus and the surface are rendered
again with a zoomed view of the surrounding area that focuses on a 3× 3 area around the contact point.
In this second stage of rendering, the camera is moved to the estimated point of contact, but the view
vector is retained. The ToolDropMethod is re-applied for the newly rendered sections of torus and surface.

One issue to resolve is what resolution (in pixels) to make the windows used in rendering? I.e., more
pixels results in higher accuracy, but longer render times. The next section looks at the error resulting
in the pixel approximation, and derives a method for determining the window resolution based on the
maximum error deemed acceptable by the user.

Error Analysis:

In this work the tool and the part surface are approximated by planar facets. The triangulation
simpli�es the mathematical formulation but requires it to be executed many times. Accuracy requires
�ne triangulation and computational e�ciency favours coarse triangulation. This is an ideal optimization
problem in which user acceptable error can be used to determine triangular accuracy. Facet approximation
introduces error in the tool position. The impact of the error due to approximation of the torus is discussed
here.

The triangle rendering of the torus is a piecewise-linear approximation to the torus. Looking at
a circular cross-section of the torus, and referring to �gure 2, the error δ in the approximation is a
function of the spacing between the pixels (∆x) and the position on the circle (xi). Since orthographic
projection is used, the rendering of each pixel can be thought of as casting a ray parallel to the tool
axis. Two neighboring rays are shown in �gure 2. Essentially, the z-bu�er algorithm is making a linear
approximation to the circle on the line segment between the two points of intersection of these rays and
the circle. This approximating line deviates from the circular insert. From right triangles, we can show
that the maximum distance δ from this approximating line to the circle is

δ =
a2 + δ2

2Ri
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and since δ � 1 we can drop the δ2 term and still have a tight bound on δ:

δ <
a2

2Ri
. (2.1)

Knowing the equation of the circle, the length of the line segment between the intersection of two
neighbring rays that are ∆x apart can be calculated. The rays �red from xj and at xj−1 intersects the
circle at yj and at yj−1. Then

(yj −Ri)
2 = R2

i − x2j

(yj−1 −Ri)
2 = Ri2 − (xj − ∆x)2

and thus

∆y = yj − yj−1 = Ri −
√
R2

i − x2j −
(
Ri −

√
R2

i − (xj − ∆x)2
)

= −
√
R2

i − x2j +
√
R2

i − (xj − ∆x)2 (2.2)

In this equation, ∆x is constant and ∆y is small at the bottom of the circular insert and is largest at the
side of the insert (at x = Ri) where it is given by

∆y =
√

2Ri∆x− (∆x)2.

Further, we know

2a =
√

(xj − xj−1)2 + (yj − yj−1)2 =
√

(∆x)2 + (∆y)2. (2.3)

Substituting a and ∆y (equations (2.3) and (2.2)) in (2.1) gives us the following expression for δ:

δ <

√
(∆x)2 + (∆y)2

8Ri
=

√
(∆x)2 +

(
−
√
R2

i − x2j + (
√
R2

i − (xj − ∆x)2)
)2

8Ri
(2.4)

and at xj = Ri, where the error is maximum, we have

δ <
2Ri∆x

8Ri
=

∆x

4
(2.5)

as a bound on the worse case error in our approximation.
We can use (2.5) to determine how many pixels to use in our GPU algorithm to obtain a desired

error bound. For example, with the machine in our lab, using a tool with Ro = 6.7mm, Ri = 6mm,
where we want 0.01mm accuracy, using a view volume of 25mm ≈ 2(Ro + Ri), we can see that using a
width and height of 625 pixels gives a ∆x = 25mm/626 = 0.04mm and thus δ has the desired accuracy
of δ < 0.01mm.

However, note that this worst case error occurs with the outer portion of the tool. While this outer
portion of the tool will cut away stock, for many types of machining, the �nish machining will be cut
with the bottom of the tool. Equation (2.4) gives the error δ as a function of xj and ∆x. We plot this
error function (generalizing the discrete locations xj to continuous locations x) in Figure 3. In this plot,
we see that away from the edge of the tool, the error is more than an order of magnitude lower than the
maximum error. Thus, if the �nish machine is performed with the bottom of the tool, a larger pixel size
should give acceptable error bounds in our GPU simulation.
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Fig. 3: Approximation error δ as a function of x and ∆x, with x ranging from 0 to Ri in mm.

Conclusions:

The tool positioning method proposed in this paper does not require the solution of simultaneous equa-
tions or initial guesses. The new method emulates the tool dropping on a surface [3]. In addition, the
GPU based tool drop method is repeatedly used with a rotation algorithm to obtain multiple contacts
between the tool and the design surface and produce gouge-free 5-axis tool positions.

Many of these tool positioning methods use a triangular approximation for surface and tool. These
approximations impact the tool position relative to the surface. The paper studies the impact approx-
imation can have and identi�es limits to the approximations. These limits can be used as guides for
setting the accuracy of triangulation for curved surfaces. In the �nal paper, we give additional details of
our GPU algorithm and we extend our analysis to determine an appropriate tessellation level to use for
the design surface.
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