
174

Title:
On Computing Offsets of Polygons

Authors:
Martin Held, held@cs.sbg.ac.at, Universität Salzburg
Stefan de Lorenzo, slorenzo@cs.sbg.ac.at, Universität Salzburg
Peter Palfrader, peter@palfrader.org, Universität Salzburg

Keywords:
Offsetting, Boolean operations, Voronoi diagram, Bentley-Ottmann algorithm, Experimental evaluation

DOI: 10.14733/cadconfP.2023.174-178

Introduction:
For a set S of (possibly infinitely many) points in the plane, the constant-radius offset O(S, r) for offset
distance r is the set of all points of the plane whose minimum (Euclidean) distance from S equals r.
Mathematically speaking, such an offset is the envelope of the offset area OA(S, r) :=

⋃
p∈S D(p, r),

where D(p, r) denotes a disk of radius r centered at the point p. If S is given by a set of straight-line
segments and circular arcs, then such an offset consists of one or more closed curves consisting of straight-
line segments and circular arcs. See Figure 1a for a sample offset of a simple polygon. We call a closed
curve formed by a (finite) sequence of straight-line segments and circular arcs a circular-arc polygon.

Held et al. [4] generalize the concept of multiplicatively weighted Voronoi diagrams (MWVDs) by
introducing so-called variably-weighted straight-line segments: They assign real-valued weights w(p) > 0
and w(q) > 0 to the end points p and q of a straight-line segment pq. Weights of the points along pq can
be derived by linearly interpolating between w(p) and w(q). Even for a fixed offset value, these weights
introduce more flexibility: In contrast to conventional constant-radius offsetting, where all parts of the
input set expand or shrink uniformly at the same speed, variable-radius offsetting induced by the weights
allows parts to expand or shrink in a non-uniform manner; see Figure 1b.

By definition, the offset area OA(S, r) is a union of disks. As shown in the sequel, if S is modeled by
a finite number of points and straight-line segments, then such a union of possibly infinitely many disks
can be replaced by the union of finitely many disks and rectangles, or by disks and trapezoids in the
case of variably-weighted sites. Hence, constant-radius and variable-radius offset areas can be obtained
by computing the union of a finite number of circular-arc polygons of low combinatorial complexity.

If no weights are assigned to the end points of the straight-line segments of S, then there is another
alternative: The approach detailed by Held [3] employs the Voronoi diagram of S to obtain constant-radius
offsets of S. We note that Voronoi diagrams can be generalized appropriately to structures that would
admit efficient variable-radius offsetting even for weighted segments once that structure is known, see [4].
Unfortunately, these structures are much more difficult to compute than standard Voronoi diagrams.

Our Contribution:
We present an experimental evaluation of run-times consumed by the computation of constant-radius
and variable-radius offsets of polygons. Our evaluation involves several leading software packages for

Proceedings of CAD’23, Mexico City, Mexico, July 10-12, 2023, 174-178
© 2023 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


175

(a)

10.5 14

10.5

2.3

9

3.2

(b)

Fig. 1: Sample interior and exterior (a) constant-radius and (b) variable-radius offsets that have been
derived from the same input polygon. The weights are written next to the corresponding polygon vertices.

computing Boolean operations on (circular-arc) polygons. Their run-times are compared to the results of
our own codes Circular Arc Polygon OPerations (CAPOP) for computing Boolean operations and Vroni
(for computing Voronoi diagrams). CAPOP can handle genuine circular-arc polygons without prior (or
code-internal) polygonal approximations of circular arcs. Extensive tests show that CAPOP is slower
than Vroni but that its performance is clearly superior compared to the other software packages that
we tested. However, in contrast to Vroni, CAPOP can also generate variable-radius offsets.

Variable-Radius Offsets:
Let p be a point of the Euclidean plane R2 and assign a positive real-valued weight w(p) to it. We
call p a weighted point. The weighted distance dw(a, p) between a point a ∈ R2 and p is defined as
dw(a, p) :=

d(a,p)
w(p) , where d(a, p) denotes the standard Euclidean distance between a and p. Now consider

a straight-line segment pq between the weighted points p and q. The weights w(p) and w(q) need not be
identical. For 0 ≤ λ ≤ 1, the weight of a point (1−λ)p+λq on pq is given by (1−λ)w(p)+λw(q), i.e., by
the matching linear interpolation of the weights of p and q. We call pq a variably-weighted straight-line
segment. The weighted distance between a point a ∈ R2 and pq is given as dw(a, pq) := minb∈pq dw(a, b).

Let S be a set of finitely many weighted points and variably-weighted straight-line segments defined
by some pairs of the weighted points. No straight-line segment of S is allowed to contain any weighted
point of S except for its two end points, and no pair of segments of S may share a point except for a
common end point. We refer to the elements of such a set S as sites.

The variable-radius offset area OAv(S, r) induced by S relative to the offset value r ≥ 0 is the
set of all points of the plane whose minimum weighted distance from S is at most r. More formally,
OAv(S, r) :=

{
a ∈ R2 : mins∈S dw(a, s) ≤ r

}
. The variable-radius offset Ov(S, r) of S for offset value r is

given by the boundary of its offset area. All variable-radius offsets are exclusively made up of straight-line
segments and circular arcs [4].

The definition of OAv(S, r) implies for a point a that a ∈ OAv(S, r) if and only if there exists a site
s ∈ S such that dw(a, s) ≤ r. That is, if and only if a ∈ OAv({s}, r). If s is a weighted point, then
OAv({s}, r) is given by the disk D(s, w(s) · r). If s is a variably-weighted straight-line segment pq, then
OAv({s}, r) is given by the convex hull of OAv({p}, r) and OAv({q}, r), i.e., by the convex hull of two
disks. Hence, in this case OAv({s}, r) is the union of these two disks and a trapezoid defined by the
four points in which the two bi-tangents touch the disks. In Figure 2b, the offset of a variably-weighted
straight-line segment is shown where the weight of q is twice as large as the weight of p.

Proceedings of CAD’23, Mexico City, Mexico, July 10-12, 2023, 174-178
© 2023 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


176

p

q

(a)

p

q

(b)

Fig. 2: (a) A constant-radius offset and (b) a variable-radius offset of a straight-line segment pq is shown.

Boolean Operations on Circular-Arc Polygons:
The previous section allows us to conclude that we can compute OAv(S, r) by computing the union of
the finitely many offset areas OAv({s}, r) for all s ∈ S. Since every OAv({s}, r) has a simple circular-
arc polygon as its boundary, computing the union of circular-arc polygons would suffice to generate a
variable-radius offset. This insight lets us resort to computing Boolean operations for obtaining offsets.

Computing Boolean operations among polygons is a well-established research area. Our own imple-
mentation, CAPOP, uses a modified Bentley-Ottmann approach [1] to compute the union, intersection,
or difference of two regions of R2 that are bounded by circular-arc polygons. We refer to Martínez et
al. [7] for a detailed description of the main algorithm. Although their algorithm can perform Boolean
operations only on purely polygonal data, all of the underlying events can be handled analogously in the
case of circular arcs. The only important aspect is that all circular arcs that show up in the input need
to be broken up into pieces that are monotone in a preprocessing step: If the sweep employed by the
Bentley-Ottmann algorithm moves from bottom to top, then every circular arc and every full circle needs
to be split at its south pole and at its north pole by inserting up to two new vertices.

For some applications it may be required to distinguish between the inner and the outer offset curves
of a polygon P . Of course, the inner offset curves could be identified by subtracting OAv(P, r) from the
area bounded by P . However, this would require a second run of the Boolean-operation code. Classifying
closed loops of the offsets by running point-in-polygon tests for each loop could be equally costly.

Fortunately there is a considerably simpler solution to this problem: For the two straight-line segments
of the offset of a variably-weighted straight-line segment pq we maintain a pointer to pq. Similarly we
maintain a pointer to the appropriate vertex, p or q, for the two circular caps of that offset. Of course,
if an offset segment is split into two segments during the Bentley-Ottmann plane sweep, then these two
new segments inherit the pointers from the original segment. Same for arcs.

Once CAPOP has completed the union computations, we loop over all resulting closed offset curves
and determine for every offset curve whether it is inside or outside of the input area defined by P . For
every offset curve C this decision is made by determining the position of one segment or arc (selected
arbitrarily from C) relative to the input segment referenced by its pointer. (For an offset arc we inspect
the two input segments that share the input vertex referenced by the pointer.)

Experimental Evaluation:
We evaluated the run-time performance of CAPOP and compared it to several other software packages
that support the computation of constant-radius or even variable-radius offsets:

• The Computational Geometry Algorithms Library (CGAL) [8] supports Boolean operations on

Proceedings of CAD’23, Mexico City, Mexico, July 10-12, 2023, 174-178
© 2023 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


177

circular-arc polygons through its Arrangement_2 package. Thus, by using CGAL it is possible to
derive constant-radius as well as variable-radius offsets from polygons.

• The Boost C++ Library (Boost) [6] makes it possible to generate variable-radius offsets by using
its geometry buffer functions. However, Boost approximates circular arcs in the input by polygonal
chains. By default, Boost approximates a full circle by a polygonal chain consisting of ninety
straight-line segments. (Circular arcs are approximated accordingly.)

• Clipper2 [5] supports Boolean operations on simple polygons. Additionally, Clipper2 offers a package
for deriving constant-radius offsets of polygons. Similar to Boost, Clipper2 needs to approximate
input circular arcs by polygonal chains; we used the same approximation as for Boost.

• Vroni [3] is able to compute Voronoi diagrams of points, straight-line segments, and circular arcs.
Based on a Voronoi diagram it can also compute a family of constant-radius offset curves.

• OpenVoronoi [9] is an open-source library that is able to compute Voronoi diagrams of points and
straight-line segments. Similar to Vroni, it allows to compute constant-radius offset curves.

In order to be able to include all packages in our test runs we started with timing the computation of
constant-radius offsets. The input polygons were taken from the Salzburg Database of Polygonal Data
[2]. We tested all packages on about 2700 different polygonal areas with and without holes. All tests were
carried out on an Intel Core i9-10980XE processor clocked at 3.0GHz. In order to avoid an excessively
long duration of our tests we set a time limit of 15 minutes for the processing of one input polygon.

The actual offset distance δ is chosen according to an empirically derived formula that takes into
account the size of the bounding box of the polygon and the number of its vertices. Thus, the specific
value of δ depends on the actual geometry of the input polygon and varies among the different inputs.

Figure 3 shows the run-time results for offset distance δ. In the plot the x-axis corresponds to the
number n of vertices of the input polygons, and the y-axis corresponds to the run-time divided by
the factor n log n. Both axes are in logarithmic scale. Note that for our CAPOP (apx) test runs we
approximated every input circle by a polygonal chain consisting of ninety straight-line segments. Thus,
the inputs for CAPOP (apx) were identical to those used by Clipper2 and Boost. Since they approximate
input arcs it is needless to say that Clipper2, Boost and CAPOP (apx) cannot compute the correct offset
but only a polygonal approximation of the correct offset.

The plot indicates that Vroni, CAPOP and OpenVoronoi are the only packages whose run-times
seem to be of the order O(n log n) for this test setting. Studying a similar plot where all run-times are
divided by n2 suggests that CGAL, Clipper2 and Boost have a (close-to) quadratic complexity. We note,
though, that their run-times started to exceed the 15-minute time limit set for one process once n got
larger than about 10 000. And none of them managed to handle input files with substantially more than
100 000 vertices within that time limit. OpenVoronoi ended up looping for about eleven percent of our
test inputs. CAPOP (apx) ran out of memory for inputs with more than roughly 100 000 vertices. Finally,
we note that CGAL is the only code in our tests that used exact arithmetic. Hence, it could be expected
to be somewhat slower than the other codes.

In other test series we repeated our runs for offset distance δ scaled by a constant factor, and we
timed variable-radius offsets. These additional tests did not produce strikingly different results, and we
omit details due to lack of space.

Acknowledgements:
This work was supported by the Austrian Science Fund (FWF): Grant P31013.

Proceedings of CAD’23, Mexico City, Mexico, July 10-12, 2023, 174-178
© 2023 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


178

101 102 103 104 105 106

Input size

100

101

102

103

104

R
u
n
ti

m
e

(µ
s)
/
n

lo
g
n

Boost

CAPOP (apx)

CAPOP

CGAL

Clipper

OpenVoronoi

VRONI

Fig. 3: Experimental run-time results for offset distance δ.

References:
[1] Bentley, J.L.; Ottmann, T.A.: Algorithms for Reporting and Counting Geometric Intersections. IEEE

Trans. Comput., C-28(9), 643–647, 1979. http://doi.org/10.1109/TC.1979.1675432.
[2] Eder, G.; Held, M.; Jasonarson, S.; Mayer, P.; Palfrader, P.: Salzburg Database of Polygonal Data:

Polygons and Their Generators. Data in Brief, 31, 105984, 2020. ISSN 2352-3409. http://doi.org/
10.1016/j.dib.2020.105984.

[3] Held, M.: VRONI and ArcVRONI: Software for and Applications of Voronoi Diagrams in Science and
Engineering. In Proc. 8th Int. Symp. Voronoi Diagrams in Science & Engineering, 3–12. IEEE, 2011.
http://doi.org/10.1109/ISVD.2011.9.

[4] Held, M.; Huber, S.; Palfrader, P.: Generalized Offsetting of Planar Structures using Skeletons.
Comput. Aided Design & Appl., 13(5), 712–721, 2016. http://doi.org/10.1080/16864360.2016.
1150718.

[5] Johnson, A.: Clipper2. http://www.angusj.com/clipper2/Docs/Overview.htm.
[6] Koranne, S.: Boost C++ Libraries. In Handbook of Open Source Tools, 127–143. Springer-Verlag,

2011.
[7] Martínez, F.; Rueda, A.J.; Feito, F.R.: A New Algorithm for Computing Boolean Operations on

Polygons. Comput. Geosci., 35(6), 1177–1185, 2009. http://doi.org/10.1016/j.cageo.2008.08.
009.

[8] The CGAL Project: CGAL User and Reference Manual. CGAL Editorial Board, 5.0 ed., 2019.
https://doc.cgal.org/5.0/Manual/packages.html.

[9] Wallin, A.: OpenVoronoi. https://github.com/aewallin/openvoronoi.

Proceedings of CAD’23, Mexico City, Mexico, July 10-12, 2023, 174-178
© 2023 CAD Solutions, LLC, http://www.cad-conference.net

http://doi.org/10.1109/TC.1979.1675432
http://doi.org/10.1016/j.dib.2020.105984
http://doi.org/10.1016/j.dib.2020.105984
http://doi.org/10.1109/ISVD.2011.9
http://doi.org/10.1080/16864360.2016.1150718
http://doi.org/10.1080/16864360.2016.1150718
http://www.angusj.com/clipper2/Docs/Overview.htm
http://doi.org/10.1016/j.cageo.2008.08.009
http://doi.org/10.1016/j.cageo.2008.08.009
https://doc.cgal.org/5.0/Manual/packages.html
https://github.com/aewallin/openvoronoi
http://www.cad-conference.net

