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Introduction: 
When interpolating a 3D mesh, the locations of a Bezier surface’s control points are determined solely 
by continuity conditions; that is, we cannot freely move them around. Researchers [2; 8-10] tried to 
find ways to extend/modify the definition of a Bezier surface so that one could reshape the surface 
without moving the control points, but an intuitive and straightforward approach was not available for 
quite a while.  
Thanks to the introduction of the tension control concept into curves and triangular patches [3], [1] 
was able to invent a Beta-Bezier curve which (adopting the tensor-product approach) can be used to 
define the type of surface patches that we propose in this paper: Beta-Bezier patches. A Beta-Bezier 
curve segment is defined as  

, 
where 

.                                   (1) 
 
In the latter formula, n is the degree, and k is the control point index. A surface flattens out as its beta 
parameter increases. In addition to extending the work of [1] to surfaces, we propose an efficient 
rectangular mesh interpolation scheme that makes use of Beta-Bezier patches. Our scheme yields C2-
continuous piecewise Beta-Bezier surfaces which improves on the existing algorithms [5-7] in two ways:  

- The existing algorithms yield G1-continuous surfaces; ours yields C2-continuous surfaces. 
- Surfaces produced by the existing algorithms cannot be reshaped; ours can be. 

Main Idea: 
A Bezier surface patch is defined as the locus of a moving, deforming Bezier curve segment. An 
important assumption here is that each control point Pi(u) moves along a Bezier curve which has its 
own control points. The equation of a moving Bezier curve segment is 
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 .  
Our discussion suggests that we have a grid of control points. This grid of control points is called a 
control net. Each control point is denoted by Pij. Since Pi(u) is a Bezier curve, it is defined as  

.  

If we substitute  for Pi(u) in the equation of a moving Bezier curve segment, we get 

  
which is the equation of a Bezier surface patch. A Beta-Bezier surface patch is defined as the locus of a 
moving, deforming Beta-Bezier curve segment. Proceeding in the same manner as above, we get  

,  

which is the equation of a Beta-Bezier surface (  and  are defined by equation (1)). 
 
A bicubic Beta-Bezier surface patch can be represented by a bicubic Bezier surface patch. Recall that a 
Beta-Bezier surface patch is defined as the locus of a moving, deforming Beta-Bezier curve segment. So, 

it can be written as  (2). For each  we find , so 

that  can be expressed as a cubic Bezier curve in u as follows: 

                                                                            (3) 

 can be found as follows: 
 

 
By substituting (3) into (2), we have 

 
 

                                            (4) 
 

For each , we find  using the same procedure as above, so that  can be 
expressed as a cubic Bezier curve in v as follows: 
 

                                                                         (5) 
 

By substituting (5) into (4), we have a bicubic Bezier surface patch representation for . 
Figures 1 and 2 show two examples of Beta-Bezier surface patches. 
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Fig. 1: The blue control net is the control net for the Bezier surface patch, the black one is for the Beta-
Bezier surface patch. 

 
Fig. 2: The blue control net is the control net for the Bezier surface patch, the black one is for the Beta-
Bezier surface patch. 

 
As can be seen from the figures, the surface flattens out as Beta increases. It should be emphasized 
that the Beta-Bezier control points did not have to change to get from figure 1 to figure 2; the only 
difference between the two figures is the value of Beta.  
 
A Beta-Bezier surface patch interpolates its four corner control points. This means that complex 
shapes can be modeled using a composite Bezier surface (i.e. multiple patches pieced together). [3] For 
any two patches to meet smoothly (e.g. to be Cn continuous), there are two conditions that must be 
met: 
- The two patches must have a common boundary  
- All the columns of their control nets (or rows if the two patches are to be pieced together 
sideways) must be control polygons for Cn continuous curves. 
 
Let’s suppose that there is a 3D mesh that we wish to interpolate. Our algorithm works as follows. It (a) 
generates longitudinal curves interpolating the columns of the data mesh in question, (b) generates 
latitudinal curves interpolating the rows of the data mesh (including the rows generated by step (a)), 
and finally (c) generates a piecewise surface using the control points computed in the process. 3D 
meshes can be represented in a variety of ways, none of which explicitly tells what data points 
comprise a column (or a row). One way to solve this problem is to use an adjacency matrix to represent 
the mesh and perform a depth-first search with no backtracking and a criterion for choosing the next 
vertex. Before we state the criterion, we should make clear that each vertex has four neighbors, one of 
which is the vertex we have come from, so really, we have 3 neighbors to choose from. Here is how we 
choose: We calculate the angle between the edge that connects each neighbor with the current vertex 
and the edge between the current vertex and the previous one, and then we take the median of those 
angles. Composite Beta-Bezier surfaces are shown in figures 3, 4, and 5. 
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Fig. 3: Composite surface with Beta = 0, Beta = 0.5, and Beta = 1.5. 
 

 
 

Fig. 4: Composite surface with Beta = 0, Beta = 0.5, and Beta = 1.5. 
 

 
 

Fig. 5: Composite surface with Beta = 0, Beta = 0.5, and Beta = 1.5. 
 
To prove the correctness of our algorithm, we need to prove that it produces the right number of 
control points for each patch and that the control points meet the continuity conditions. We start with 
the former. We will prove it for the bicubic case. To generate a bicubic Beta-Bezier patch, we need 16 
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control points. If we interpolate a column of the data mesh, we get two control points for every 
segment. After interpolating all the columns, each patch has 4 control points plus the 4 data points, 
for a total of 8 control points. Put another way, each patch has four rows of control points each 
containing 2 control points. If we interpolate those rows, we get 8 additional control points, totaling 16 
control points. Curve interpolation, as described in [1], generates cubic curves that are C2 continuous. 
Therefore, the columns (and rows) of the control nets of the adjacent patches produced by our 
algorithm are control polygons of C2 continuous Beta-Bezier curves (i.e., the second continuity 
condition). We start by interpolating the data points. This guarantees that we have common boundary 
curves (i.e., the first continuity condition), which completes our proof. 
 
As for the running time of our algorithm, let’s suppose there are n columns and m rows on the mesh in 
question. As explained in [1], interpolating m points involves solving an 2mx2m system which, in a 
worst-case scenario, takes O(m3) time. Therefore, step (a) of our algorithm takes O(nm3) time. Following 
similar reasoning, we can conclude that step (b) takes O(mn3) time, for a total running time of O(nm3+ 
mn3). 

Conclusion: 
In this paper, we extend the concept of tension control proposed in [1] from curves to surfaces. The 
proposed type of surface patches can be reshaped without moving its control points. In addition to 
extending the work of [1] to surfaces, we propose an efficient rectangular mesh interpolation scheme 
that makes use of the proposed type of patches. 
One thing that should be studied is how a Beta-Bezier surface can be represented as a B-spline surface. 
Also, our interpolation scheme only works with rectangular grids. Meshes with arbitrary topology 
should also be considered. More work is needed to address the above.   
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