
154

Proceedings of CAD’23, Mexico City, Mexico, July 10-12, 2023, 154-158
© 2023 CAD Solutions, LLC, http://www.cad-conference.net

Title:
Beta-Bezier Surfaces

Authors:
Seifalla Moustafa, seifalla.moustafa@uky.edu, University of Kentucky
Anastasia Kazadi, ansm226@g.uky.edu, University of Kentucky
Fuhua (Frank) Cheng, cheng@cs.uky.edu, University of Kentucky
Shuhua Lai, slai@ggc.edu, Georgia Gwinnett College
Alice J Lin, lina@apsu.edu, Austin Peay State University

Keywords:
Bezier curves, Bezier surfaces, Beta-Bezier Curves, Beta-Bezier Surfaces, tension control, interpolation

DOI: 10.14733/cadconfP.2023.154-158

Introduction:
When interpolating a 3D mesh, the locations of a Bezier surface’s control points are determined solely
by continuity conditions; that is, we cannot freely move them around. Researchers [2; 8-10] tried to
find ways to extend/modify the definition of a Bezier surface so that one could reshape the surface
without moving the control points, but an intuitive and straightforward approach was not available for
quite a while.
Thanks to the introduction of the tension control concept into curves and triangular patches [3], [1]
was able to invent a Beta-Bezier curve which (adopting the tensor-product approach) can be used to
define the type of surface patches that we propose in this paper: Beta-Bezier patches. A Beta-Bezier
curve segment is defined as

,
where

. (1)

In the latter formula, n is the degree, and k is the control point index. A surface flattens out as its beta
parameter increases. In addition to extending the work of [1] to surfaces, we propose an efficient
rectangular mesh interpolation scheme that makes use of Beta-Bezier patches. Our scheme yields C2-
continuous piecewise Beta-Bezier surfaces which improves on the existing algorithms [5-7] in two ways:

- The existing algorithms yield G1-continuous surfaces; ours yields C2-continuous surfaces.
- Surfaces produced by the existing algorithms cannot be reshaped; ours can be.

Main Idea:
A Bezier surface patch is defined as the locus of a moving, deforming Bezier curve segment. An
important assumption here is that each control point Pi(u) moves along a Bezier curve which has its
own control points. The equation of a moving Bezier curve segment is

http://www.cad-conference.net/
mailto:seifalla.moustafa@uky.edu
mailto:ansm226@g.uky.edu
mailto:cheng@cs.uky.edu
mailto:slai@ggc.edu
mailto:lina@apsu.edu

155

Proceedings of CAD’23, Mexico City, Mexico, July 10-12, 2023, 154-158
© 2023 CAD Solutions, LLC, http://www.cad-conference.net

 .
Our discussion suggests that we have a grid of control points. This grid of control points is called a
control net. Each control point is denoted by Pij. Since Pi(u) is a Bezier curve, it is defined as

.

If we substitute for Pi(u) in the equation of a moving Bezier curve segment, we get

which is the equation of a Bezier surface patch. A Beta-Bezier surface patch is defined as the locus of a
moving, deforming Beta-Bezier curve segment. Proceeding in the same manner as above, we get

,

which is the equation of a Beta-Bezier surface (and are defined by equation (1)).

A bicubic Beta-Bezier surface patch can be represented by a bicubic Bezier surface patch. Recall that a
Beta-Bezier surface patch is defined as the locus of a moving, deforming Beta-Bezier curve segment. So,

it can be written as (2). For each we find , so

that can be expressed as a cubic Bezier curve in u as follows:

 (3)

 can be found as follows:

By substituting (3) into (2), we have

 (4)

For each , we find using the same procedure as above, so that can be
expressed as a cubic Bezier curve in v as follows:

 (5)

By substituting (5) into (4), we have a bicubic Bezier surface patch representation for .
Figures 1 and 2 show two examples of Beta-Bezier surface patches.

http://www.cad-conference.net/

156

Proceedings of CAD’23, Mexico City, Mexico, July 10-12, 2023, 154-158
© 2023 CAD Solutions, LLC, http://www.cad-conference.net

Fig. 1: The blue control net is the control net for the Bezier surface patch, the black one is for the Beta-
Bezier surface patch.

Fig. 2: The blue control net is the control net for the Bezier surface patch, the black one is for the Beta-
Bezier surface patch.

As can be seen from the figures, the surface flattens out as Beta increases. It should be emphasized
that the Beta-Bezier control points did not have to change to get from figure 1 to figure 2; the only
difference between the two figures is the value of Beta.

A Beta-Bezier surface patch interpolates its four corner control points. This means that complex
shapes can be modeled using a composite Bezier surface (i.e. multiple patches pieced together). [3] For
any two patches to meet smoothly (e.g. to be Cn continuous), there are two conditions that must be
met:
- The two patches must have a common boundary
- All the columns of their control nets (or rows if the two patches are to be pieced together
sideways) must be control polygons for Cn continuous curves.

Let’s suppose that there is a 3D mesh that we wish to interpolate. Our algorithm works as follows. It (a)
generates longitudinal curves interpolating the columns of the data mesh in question, (b) generates
latitudinal curves interpolating the rows of the data mesh (including the rows generated by step (a)),
and finally (c) generates a piecewise surface using the control points computed in the process. 3D
meshes can be represented in a variety of ways, none of which explicitly tells what data points
comprise a column (or a row). One way to solve this problem is to use an adjacency matrix to represent
the mesh and perform a depth-first search with no backtracking and a criterion for choosing the next
vertex. Before we state the criterion, we should make clear that each vertex has four neighbors, one of
which is the vertex we have come from, so really, we have 3 neighbors to choose from. Here is how we
choose: We calculate the angle between the edge that connects each neighbor with the current vertex
and the edge between the current vertex and the previous one, and then we take the median of those
angles. Composite Beta-Bezier surfaces are shown in figures 3, 4, and 5.

http://www.cad-conference.net/

157

Proceedings of CAD’23, Mexico City, Mexico, July 10-12, 2023, 154-158
© 2023 CAD Solutions, LLC, http://www.cad-conference.net

Fig. 3: Composite surface with Beta = 0, Beta = 0.5, and Beta = 1.5.

Fig. 4: Composite surface with Beta = 0, Beta = 0.5, and Beta = 1.5.

Fig. 5: Composite surface with Beta = 0, Beta = 0.5, and Beta = 1.5.

To prove the correctness of our algorithm, we need to prove that it produces the right number of
control points for each patch and that the control points meet the continuity conditions. We start with
the former. We will prove it for the bicubic case. To generate a bicubic Beta-Bezier patch, we need 16

http://www.cad-conference.net/

158

Proceedings of CAD’23, Mexico City, Mexico, July 10-12, 2023, 154-158
© 2023 CAD Solutions, LLC, http://www.cad-conference.net

control points. If we interpolate a column of the data mesh, we get two control points for every
segment. After interpolating all the columns, each patch has 4 control points plus the 4 data points,
for a total of 8 control points. Put another way, each patch has four rows of control points each
containing 2 control points. If we interpolate those rows, we get 8 additional control points, totaling 16
control points. Curve interpolation, as described in [1], generates cubic curves that are C2 continuous.
Therefore, the columns (and rows) of the control nets of the adjacent patches produced by our
algorithm are control polygons of C2 continuous Beta-Bezier curves (i.e., the second continuity
condition). We start by interpolating the data points. This guarantees that we have common boundary
curves (i.e., the first continuity condition), which completes our proof.

As for the running time of our algorithm, let’s suppose there are n columns and m rows on the mesh in
question. As explained in [1], interpolating m points involves solving an 2mx2m system which, in a
worst-case scenario, takes O(m3) time. Therefore, step (a) of our algorithm takes O(nm3) time. Following
similar reasoning, we can conclude that step (b) takes O(mn3) time, for a total running time of O(nm3+
mn3).

Conclusion:
In this paper, we extend the concept of tension control proposed in [1] from curves to surfaces. The
proposed type of surface patches can be reshaped without moving its control points. In addition to
extending the work of [1] to surfaces, we propose an efficient rectangular mesh interpolation scheme
that makes use of the proposed type of patches.
One thing that should be studied is how a Beta-Bezier surface can be represented as a B-spline surface.
Also, our interpolation scheme only works with rectangular grids. Meshes with arbitrary topology
should also be considered. More work is needed to address the above.

References:
[1] Cheng, F.; Kazadi, A.; Lin, A.: Beta-Bezier curves. CAD'20, 2020,

https://doi.org/10.14733/cadconfp.2020.343-347
[2] Cao, J.; Wang, G.Z.: An extension of Bernstein-Bezier surface over the triangular domain, Progress

Nat. Sci. 17, 2007, 352-357. https://doi.org/10.1080/10020070612331343269
[3] Chu, L.; Zeng, X.M.: Constructing curves and triangular patches by Beta functions. Journal of

Computational and Applied Mathematics, 260, 2014, 191-200.
https://doi.org/10.1016/j.cam.2013.09.025

[4] Farin, G.E.: Curves and surfaces for computer aided geometric design: A practical guide.
Academic Press, 1988. https://doi.org/10.1016/B978-0-12-460515-2.50020-2

[5] Lin, H.; Chen, W.; Bao, H.: Adaptive patch-based mesh fitting for reverse engineering. In
Computer-Aided Design, 39(12), 2007, 1134–1142, Elsevier BV.
https://doi.org/10.1016/j.cad.2007.10.002

[6] Eck, M.; Hoppe, H.: Automatic reconstruction of B-spline surfaces of arbitrary topological type. In
Proceedings of the 23rd annual conference on Computer graphics and interactive techniques
(SIGGRAPH '96). Assoc. for Computing Machinery, New York, NY, USA, 1996, 325–334.
https://doi.org/10.1145/237170.237271

[7] Shirman L.; Sequin C.: Local surface interpolation with Bezier patches, Computer Aided
Geometric Design, 4, 1987, 279-95. https://doi.org/10.1016/0167-8396(87)90003-3

[8] Yan, L.L.; Liang, J.F.: An extension of the Bezier model, Applied Mathematics and Computation
218, 2011, 2863-2879. https://doi.org/10.1016/j.amc.2011.08.030

[9] Yang, L.Q.; Zeng, X.M.: Bezier curves and surfaces with shape parameters. Int. J. Comput. Math.
86, 2009, 1253-1263. https://doi.org/10.1080/00207160701821715

[10] Zhu, Y.; Han, X.: Quasi-Bernstein-Bezier polynomials over triangular domain with multiple shape
parameters, Applied Mathematics and Computation 250, 2015, 181-192.
https://doi.org/10.1016/j.amc.2014.10.098

http://www.cad-conference.net/
https://doi.org/10.14733/cadconfp.2020.343-347
https://doi.org/10.1080/10020070612331343269
https://doi.org/10.1016/j.cam.2013.09.025
https://doi.org/10.1016/B978-0-12-460515-2.50020-2
https://doi.org/10.1016/j.cad.2007.10.002
https://doi.org/10.1145/237170.237271
https://doi.org/10.1016/0167-8396(87)90003-3
https://doi.org/10.1016/j.amc.2011.08.030
https://doi.org/10.1080/00207160701821715
https://doi.org/10.1016/j.amc.2014.10.098

