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Introduction:
Freeform curves, such as Bézier curves or B-splines curves, are widely used in many applications, such
as Illustration software and CAD systems. Although Bézier curves and B-spline curves have many
nice properties, controlling the curvature variation by manually moving control points is not easy. For
quadratic Bézier curves, Sapidis et al. clarified the theoretical region of a control point where the curvature
becomes monotonically varying [4]. For cubic polynomial Bézier curve, Dietz et al. proposed a method for
generating curves with monotonically varying curvature using precomputed tables [1]. Various methods
have been proposed to generate curves with monotonically varying curvature. Some of them are class A
Bézier curves [2] and pseudo-log-aesthetic curves [7]. For Bézier curves of degree 3 or higher, the curvature
monotonocity region, which is the region of a control point where the curvature becomes monotonically
varying, has not been visualized before. By visualizing the curvature mononotonicity region in real time,
a user can know where to move the control point to make the curvature monotonically varying.

Recently, Yan et al. proposed κ-curves [6], which are interpolating quadratic Bézier curves having
local maxima of curvature only at interpolating points. Miura et al. extended the method to cubic curves
so that the method have additional control by α. In both approaches, the curve shape cannot be modified
locally. A method that can control the curve shape locally without introducing another curvature maxima
or minima is desirable.

In the present work, for polynomial Bézier curves, we present a real-time method for visualizing the
region of a specific control point where the curvature becomes monotonically varying. Therefore, when
the region is visible, a user can know where to move the specific control point to make the curvature
monotonically varying. We also present two applications of the proposed approach.

Checking the monotonicity of curvature:
Let P(t) be a regular planar parametric curve. If P(t) is a Bézier of degree n,

P(t) =

n∑
i=0

Bn
i (t)Pi (2.1)
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where Bn
i (t) are Bernstein polynomials and Pi are control points. Curvature monotonicity can be checked

if dκ
ds does not change its sign within t ∈ [0, 1]. For planar curves, dκ

ds can be computed by the following
equation [5]:

dκ

ds
=

det(Ṗ,
...
P)Ṗ · Ṗ− 3 det(Ṗ, P̈)Ṗ · P̈

|Ṗ|6
(2.2)

where Ṗ = dP
dt , P̈ = d2P

dt2 , and
...
P = d3P

dt3 . Assuming the curve is regular, the first derivative does not
vanish. In other words, the denominator of Eq. (2.2) is always positive. Therefore, checking if dκ

ds changes
its sign reduces to check if the numerator of dκ

ds changes its sign.
Let the numerator of Eq. (2.2) be λ(t):

λ(t) = det(Ṗ,
...
P)Ṗ · Ṗ− 3 det(Ṗ, P̈)Ṗ · P̈ (2.3)

For a polynomial curve of degree n, the degree of λ(t) is 4n − 7. Since λ(t) is a polynomial, it can be
represented in Bernstein basis as

λB(t) =

4n−7∑
i=0

B4n−7
i (t)ξi. (2.4)

In [5], for cubic Bézier curves, the sufficient condition of ξi ≥ 0(i = 0, . . . , 5) or ξi ≤ 0(i = 0, . . . , 5) is
used to guarantee the monotonicity of curvature. For more strict check of the curvature monotonicity,
the following algorithm is used.

Algorithm 1: Curvature Monotonicity Check

(1) If ξi ≥ 0(i = 0, . . . , 4n − 7), the part of the curve is judged to be monotonically increasing. If
ξi ≤ 0(i = 0, . . . , 4n− 7), the part of the curve is judged to be monotonically decreasing.

(2) If ξ0 · ξ4n−7 < 0, the curvature is judged to be NOT moronically varying.

(3) Recursively subdivide the curve at t = 0.5, until the condition (1) is satisfied for all subdivided
parts of the curve. If the condition (2) is satisfied or the recursion reaches to the user-specified
depth, the curvature is judged to be NOT monotonically varying.

Fig 1 (a) shows a cubic Bézier curve with monotonically varying curvature and its λ(t). Since ξi are
all negative, the curve is judged to be monotonically varying (decreasing). Fig 1 (b) shows a cubic Bézier
curve with NOT monotonically varying curvature. Since ξ0 · ξ5 < 0, the curve is immediately judged to
be NOT monotonically varying.

Visualization of monotone curvature regions of Bézier curves:
To visualize the curvature monotonicity region of a specific control of a Bézier curve, we compute ξi in
Eq. (2.4) and checks the curvature monotonicity using Algorithm 1 for all the cases where the specific
control point is placed at every pixel in the screen window. For efficiency, the computation is performed
using a GPU. In the fragment shader, ξi are computed and the curvature monotonicity is checked by
Algorithm 1. Depending on the curvature is monotonically increasing, monotonically decreasing, or NOT
monotonically varying, the corresponding pixel is painted with user-specified colors.

Fig. 2 show the curvature monotonicity region of a cubic Bézzier curve. In Fig. 2(a) or (b), if P0 is in
the blue region, the curvature become monotonically decreasing. If P0 is in the red region, the curvature
becomes monotonically increasing. Fig. 2(c) or (d) shows the region for P1. We have implemented
the visualization of the curvature monotonicity regions of Bézier curves of degree 4 or higher, but the
monotonicity region becomes generally smaller as the degree gets higher.
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(a) A curve with monotonically varying curvature and its l(t) (b) A curve with NOT monotonically varying curvature and its l(t)
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Fig. 1: Cubic Bézier curves and their λ(t)

(a) (b) (c) (d)

Fig. 2: The curvature monotonicity regions. (a) and (b) are the regions of P0. (c),(d) are those of P1.

Application 1: Curve Design:
We have implemented a curve design tool like the one in Adobe Illustrator and added the visualization
of the curvature monotonicity regions. Fig. 3 shows an example. The dark red region near Q3 indicates
that if Q3 is in the region, the curvature of the cubic Bézier curve defined by Q1, Q2, Q3 and Q4 becomes
monotonically varying. The cyan region near Q5 is the same for the curve defined by Q4, Q5, Q6, Q7.
When Q4 is moved, both Q3 and Q5 are moved accordingly. If Q4 is placed within the purple region,
both the curvature of the curve defined by Q1, Q2, Q3 and Q4 and the curvature of the curve defined by
Q4, Q5, Q6 and Q7 become monotonically varying. Fig. 4(a) shows an apple designed without visualizing
the curvature monotonicity region. Fig. 4(b) to (f) are the process of modifying the curve shape so that
the curvature becomes monotonically varying within a use-specified curve segment. Fig. 4(g) shows the
final design.
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Fig. 3: Visualization of monotone curvature regions in a curve design tool.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4: Design of an apple shape. (a) is the original shape created without visualizing the curvature
monotonicity regions. (b) to (f) are the process of modifying the shape so that the curvature becomes
monotonically varying within a user-specified curve segment. (g) is the shape of the final design.

Application 2: Modifying the shape of the curve generated by κ-curves:
Yan et al. proposed κ-curves that are interpolatory curves where local maxima of curvature are placed
only at control points. Visualization of curvature monotonicity region can be applied to modify the
curve shape generated by κ-curves. We first subdivide the curve generated by κ-curves at the curvature
maxima using the de Casteljau’s algorithm. Since quadratic Bézier curves are used in κ-curves, the
parameter value at the curvature maxima can be easily computed. Then we degree elevate the curves to
cubic Bézier curves. As shown Fig. 5(f), Pn−1 and Pn+1 can be modified within the blue or red regions
without introducing another curvature extremum. If Pn−1, Pn, Pn+1 lies in a straight line, G1 continuity
is guaranteed. Note that almost G2 continuity is guaranteed in κ-curves. Although the continuity becomes
G1 where we modify the curve shape, it may not be a problem in many illustration applications. Our
approach provides local modification of curve shape without introducing another curvature extremum.

Conclusions:
In this work, we presented a real time method to visualize the curvature monotonicity regions of poly-
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Fig. 5: Locally modifying the shape (a) generated by κ-curves to (b) using the proposed approach without
introducing another curvature extremum. (c) to (f) are intermediate processes.

nomial curves. We show that the curve shape generated by κ-curves can be modified locally without
introducing another curvature extremum with G1 continuity. We also show that our approach can be
immediately applied to a curve design tool, such as the one in Adobe Illustrator.

The proposed approach can be applied to B-spline curves and rational curves but succinct and efficient
representation of λ(t) in Bernstein form is required. We are currently working to apply the idea to 3D
curves.
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