
292

Title:
Exact Signed Distance Function Representation of Polygons

Authors:
Csaba Bálint, csabix@inf.elte.hu, Eötvös Loránd University, Budapest
Gábor Valasek, valasek@inf.elte.hu, Eötvös Loránd University, Budapest
Róbert Bán, rob.ban@inf.elte.hu, Eötvös Loránd University, Budapest

Keywords:
Signed Distance Function, Implicit Representation, Geometric Modeling, Collision Detection

DOI: 10.14733/cadconfP.2022.292-296

Introduction:

Signed distance functions (SDF) are applied from high-quality text rendering [3] to geometric represen-
tation for collision detection [5], 3D printing, additive manufacturing [1], or advanced real-time graphics
e�ects [7]. The SDF is usually stored as a regular grid of samples for high-performance applications,
but various spatial subdivision or interpolation schemes have been proposed for storage, such as octrees
[2] or hierarchical T-meshes [6]. In complex shapes, applications mainly focus on storing a discrete
approximation to the exact SDF in conjunction with various interpolation techniques.

We propose a conservative but exact SDF representation for planar polygons. The exact SDF is com-
posed of two classes of regions, separated by parabolic and linear boundaries. We construct conservative
polygonal bounds to these regions. Our algorithm performs a series of cuts to determine the bounding
polygons that represent the distance function on the region. The exact SDF can be evaluated using these
polygons. Such a formulation is closely related to point and segment Voronoi diagrams [4]; however, our
goal is to preserve the inside-outside partitioning of the plane as well.

Voronoi interpretation:

Let us consider an arbitrary polygon, de�ned by its vertices vi, i = 1, . . . , N . Let ei = {(1− t)vi+ tvi+1 |
t ∈ (0, 1)} denote the open line segments between vi and vi+1, where vN+1 = v1. Then the SDF of a
polygon is interpreted as the extension of Voronoi regions to line segments, that is, into two types of sets:

Vi =
{
x ∈ E2 | ∀ j ∈ {1, . . . , N} : ‖x− vi‖2 ≤ d(x, ej)

}
⊆ E2, (1)

Ei =
{
x ∈ E2 | ∀ j ∈ {1, . . . , N} : d(x, ei) ≤ d(x, ej)

}
\ (Vi ∪ Vi+1) ⊆ E2, (2)

where d(x, A) = inf
a∈A
‖x− a‖2 denotes the point-to-set distance.

We refer to Vi as a vertex region and Ei as an edge region. Fig. 1a. depicts V1, E1, and V2 regions in
a triangle. Every point in an edge region is strictly closer to its closest edge than to any vertex. Note
that there are 2N regions: N vertex and N edge regions for a polygon with N vertices. Although vertex
regions can either lie inside or outside the polygon, edge regions must span across the edge segment. The
regions may be computed naively by cutting and combining all of these regions.

Proceedings of CAD'22, Beijing, China, July 11-13, 2022, 292-296
© 2022 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net

293

(a) The SDF of an edge e�ects three regions, two corner and
a linear edge region with increasing SDF values from the
inside negative values to positive outside values.

(b) The exact signed distance function and Voronoi
diagram of a concave quadrilateral. Note the
parabolic boundaries on the right and inside.

Fig. 1: The exact signed distance function (SDF) of a line segment within a triangle (a) and a concave
quadrilateral (b). Vertex regions are red and blue and line regions are orange and sky-blue colored.
Distance-based coloring highlights their linear and circular nature.

This paper constructs convex bounding polygons for Vi and Ei for fast signed distance value compu-
tation. This yields overlaps, i.e., the regions do not cover the plane uniquely, but the true SDF at any
point is obtained by evaluating the �nite number of overlapping regions and using the minimum value.

Alternatively, one could intersect the overlapping polygons to obtain an overlap-free polygon covering
approximating the parabolic intersections. Another option is storing the exact equations of the perimeter
of the corresponding sides to de�ne the region implicitly.

Signed distance function of polygons:

Let us consider a line segment between points vi = [xi, yi]
T ,vi+1 = [xi+1, yi+1]

T ∈ E2 and its SDF. The
plane is partitioned into three regions, depending on whether vi, vi+1, or an interior point of the line
segment is closest. Then, the exact distance function f : E2 → R+

0 is

f(x) =


‖x− vi‖2, if x ∈ Vi

‖x− vi+1‖2, if x ∈ Vi+1

|xTni|, if x ∈ Ei

, ni =

[
0 1
−1 0

]
vi+1 − vi

‖vi+1 − vi‖2
, (3)

where ni ∈ R2 is the unit normal vector of the segment. The Vi regions from Eq. 1 store the coordinates
of vi and the sign of the SDF within Vi. The edge regions, Ei from Eq. 2, store the linear distance as an
implicit line equation. The sign of the linear equation splits all Ei into two partitions: inside and outside.
By convention, we consider the negative partition to be the inside. Note that while the SDF within each
region is trivial, the region boundaries themselves may be complex or even concave, a combination of
piecewise linear and parabolic curves, see Fig. 1b.

For fast SDF rasterization, one can render all polygons using |f(x)| as its Z-depth, and the GPU
Z-bu�er algorithm will correctly decide the polygon visibility, thereby rasterizing using the correct and
exact signed distance function values, see Fig. 4.

Once the regions are known, the polygon SDF is stored in two scalars for each region. A vertex
SDF possesses two scalar degrees of freedom, the coordinates of the vertex from which the distance is
computed. Similarly, an edge SDF only has to encode a normal direction and a constant term.

Proceedings of CAD'22, Beijing, China, July 11-13, 2022, 292-296
© 2022 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net

294

(a) Vertex regions are initially cut along
neighboring edge normals from the ver-
tex. The red regions have positive SDF
values, these outside regions have con-
vex angles.

(b) A single edge region con-
tains both inside and outside
regions. They are initialized as
the region between these per-
pendicular lines.

(c) Overlapping edge regions after the
edge regions have been cut with every
other entity. The regions remain con-
vex and the overlap is resolved by the
Z-bu�er algorithm.

Fig. 2: Although vertex (a) and edge (b) regions are initially unbounded, the sign of the SDF is determined
already. The regions remain convex throughout the cutting process.

Convex region construction:

Our algorithm considers each possible pair of polygon entities, that is, combinations of vertices and edges,
and gradually computes bounds to their Voronoi regions.

First, our method constructs initial polygonal regions for all vertices and edges of the polygon. The
vertex (Fig. 2a.) and edge (Fig. 2b.) regions are bounded by two half-planes that are perpendicular to
the adjacent edges and the edge, respectively. We bound the in�nite regions with a large axis-aligned
box. Within this box, exact SDF queries may be performed.

Second, we perform a series of planar cuts to reduce the region sizes to approximate the true one as
close as possible. Fig. 2c. depicts the overlapping edge regions after the planar cuts. Note that we need
not only intersect the regions of the two current entities; we also have to factor in the cut locus between
these two and consider how it splits and overlaps in between the two to form our convex polygonal bounds.
Fig. 3. illustrates the vertex-vertex, vertex-edge, and edge-edge cases.

Planar cuts are e�cient but only allow convex regions. For each type of cut, we approximate the
actual shape with a single bounding cut so that all points are covered, and the SDF can be evaluated
everywhere within the bounding box. Our algorithm is summarized as follows:

1. Process input by splitting polygons into boundary components and interior holes. Outer boundaries
are processed counterclockwise; hole boundaries are enumerated clockwise to generate correct signs.

2. Initialize each region with its vertex or edge data to reconstruct the distance values, and add two
perpendicular cuts using neighbors, see Fig. 2.

3. For each pair of region within each polygon and between neighbouring polygons, perform a planar
cut, as in Fig. 3. The following section explains each type of intersection.

Region cuts:

Each vertex generates a circular SDF region on the concave side of the polygon. The polygons of vertex
regions undergo a series of cuts. First, they are cut with the perpendicular lines of the adjoining edges
going through this point, resulting in regions seen in Fig. 2a.

Proceedings of CAD'22, Beijing, China, July 11-13, 2022, 292-296
© 2022 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net

295

(a) Vertex regions are cut
with each other along their
perpendicular bisector, leav-
ing no overlap between ver-
tex regions.

(b) Vertex region is cut with 5 lines ap-
proximating the parabola between it and
the edge. The edge region is cut with a
single line containing the whole parabola
segment above the vertex.

(c) Edge regions usually have concave
parabolic borders that we bound with a
single cut. There are quite a few cases
depending on the relative position of the
segments that we had to consider.

Fig. 3: We cut regions that are close to each other with lines to retain convex polygonal regions. The
three cases, vertex � vertex (a), vertex � edge (b), and edge � edge (c) cases are in increasing complexity.

Second, each region is cut with its neighboring regions in all directions. This may be sped up with a
spatial acceleration structure, such as a regular grid, quadtree, or KD-tree, but for small input polygons
computing every intersection is still viable. Note that, it is not essential to cut with every other polygon
because if we omit distant cuts, the region may be slightly larger, barely a�ecting rasterization time.

For cutting a vertex region with another, we must cut with the perpendicular bisector in Fig. 3a.
When cutting a vertex region and a line region, the boundary will be parabolic. We approximate

these parabolic sides within the vertex region with a �xed number of line segments using tangent cuts, as
in Fig. 3b. Although this expands the regions and creates overlaps, it simpli�es the algorithm as we only
consider linear boundaries. The parabolic cut-locus must be contained within the edge region to retain
convexity. Hence, we cut the region with the line that goes through the parabola intersections with the
orthogonal lines at the edge endpoints.

Lastly, consider two edge regions as in Fig. 3c. Usually, this would separate the regions along the
angular bisector of the two edges on the shorter segment. However, when the footpoint of a cut-locus
point becomes an edge endpoint, the boundary becomes parabolic, necessitating complicated formulas
that produce the cut. Moreover, neighboring and parallel edges are special cases that we handle di�erently.

Test results:

The �gures in this paper were generated with our Matlab implementation of our proposed algorithm.
The regions for the text in Fig. 4. was generated in 2.58 seconds while performing 854124 cuts, and the
generation for the tiger took 4.64 seconds with 1575312 polygon cuts.

Conclusions:

We presented an algorithm to compute the exact SDF of polygonal shapes. The runtime of the initial
Matlab implementation made it viable as a proxy for computing an SDF partitioning for shapes bounded
by parametric curves, such as the ones found in TrueType fonts. The generated SDF regions suggest that
expanding the current solution by incorporating circular regions, i.e., by the SDF of a circle, we could
make this representation more concise for fonts and other shapes and o�sets of polygons. Merging regions

Proceedings of CAD'22, Beijing, China, July 11-13, 2022, 292-296
© 2022 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net

296

Fig. 4: Generated edge and vertex regions storing exact SDF values of polygons from TrueType fonts
from text and a tiger glyph. Overlap between regions are resolved by setting the distance values as third
coordinate to indicate depth.

to generate approximate SDF regions within error threshold, expanding it to set-theoretic operations,
and optimized generations using bounding volumes or space partitioning is subject to future research.

Acknowledgement:

EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle Control Technologies �
The Project is supported by the Hungarian Government and co-�nanced by the European Social Fund.
Supported by the ÚNKP-21-3 New National Excellence Program of the Ministry for Innovation and
Technology from the source of the National Research, Development and Innovation Fund.

References:
[1] Brunton, A.; Rmaileh, L. A.: Displaced Signed Distance Fields for Additive Manufacturing, ACM

Trans. Graph. 2021, 40 (4). https://doi.org/10.1145/3450626.3459827

[2] Frisken, S. F.; Perry, R. N.; Rockwood, A. P.; Jones, T. R.: Adaptively Sampled Distance Fields
SIGGRAPH '00; ACM Presspp 249�254. https://doi.org/10.1145/344779.344899

[3] Green, C.: Improved Alpha-Tested Magni�cation for Vector Textures and Special E�ects, ACM
SIGGRAPH 2007 Courses; SIGGRAPH '07; ACM: San Diego, California, 2007; pp 9�18.
https://doi.org/10.1145/1281500.1281665

[4] Held, M.: VRONI: An engineering approach to the reliable and e�cient computation of Voronoi
diagrams of points and line segments, Comput. Geom. 18 (2001): 95�123.

[5] Macklin, M.; Erleben, K.; Müller, M.; Chentanez, N.; Jeschke, S.; Corse, Z.: Local Optimization
for Robust Signed Distance Field Collision, Proc. ACM Comput. Graph. Interact. Tech. 2020, 3 (1).
https://doi.org/10.1145/3384538

[6] Song, X.; Jüttler, B.; Poteaux, A.: Hierarchical Spline Approximation of the Signed
Distance Function, 2010 Shape Modeling International Conference; 2010; pp 241�245.
https://doi.org/10.1109/SMI.2010.18

[7] Wright, D.: Dynamic Occlusion with Signed Distance Fields, Advances in Real-Time Rendering in
Games; SIGGRAPH, 2015.

Proceedings of CAD'22, Beijing, China, July 11-13, 2022, 292-296
© 2022 CAD Solutions, LLC, http://www.cad-conference.net

https://doi.org/10.1145/3450626.3459827
https://doi.org/10.1145/344779.344899
https://doi.org/10.1145/1281500.1281665
https://doi.org/10.1145/3384538
https://doi.org/10.1109/SMI.2010.18
http://www.cad-conference.net

