
113

Title:
Rational Generalized Trigonometric Curve: Rationalization of Generalized Trigonometric

Curve

Authors:
Kenjiro T. Miura, miura.kenjiro@shizuoka.ac.jp, Shizuoka University
R.U. Gobithaasan, gr@umt.edu.my, Universiti Malaysia Terengganu
Md Yushalify Misro, yushalify@usm.my, Universiti Sains Malaysia
Tadatoshi Sekine, sekine.tadatoshi@shizuoka.ac.jp, Shizuoka University
Shin Usuki, usuki@shizuoka.ac.jp, Shizuoka University

Keywords:
Generalized Trigonometric Curve, Circular Arcs, Elliptic Arcs, Uniqueness Theorem

DOI: 10.14733/cadconfP.2022.113-117

Introduction:

On the extensions of the cubic Bézier curve with four control points, to connect multiple segments with
required continuity has been strongly intended and for example, tangent and curvature continuity at the
start and end points are guaranteed independently by adding extra shape parameters. Contrary to this
research trend, κ-curves, which control one curvature extremum on each curve segment instead of the end
points, are de�ned as a sequence of the quadratic Bézier curve with three control points. The authors has
proposed generalized trigonometric basis functions consisting of (sin t, cos t, 1) and de�ned the generalized
trigonometric curve in order to extend κ-curves [4]. In this study, we will show that the linear generalized
trigonometric curve de�ned by three control points generates an elliptical arc, but cannot generate an
arbitrary elliptical curve. Hence we will rationalize it to express an arbitrary elliptical arc as well as
arbitrary arcs of parabola and hyperbola.

κ-Curve:

The κ-curve, proposed recently by [7], is an interpolating spline which is curvature-continuous almost
everywhere and passes through input points at the local curvature extrema. It has been implemented

as the curvature tool in Adobe Illustrator® and Photoshop® and is accepted as a favored curve design
tool by many designers (see e.g. [1, 2]).

We consider the reasons for the success of κ-curve to be:

1. Information along contours is concentrated at local maxima of curvature.

2. Curves of low degree have smooth distribution of curvature.

3. G2-continuous curves tend to look fairer than only G1-continuous ones.

Generalized Trigonometric Curve:
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In this section, we describe the generalized trigonometric curve. The blending functios of the curve are
{u, v, w} given by

u = 1− S,
v = S(1− S) + C(1− C) = S + C − 1,

w = 1− C.
(1)

where S = sin πt
2 , C = cos πt2 , for α ∈ (0, 2), t ∈ [0, 1]. It is straightforward to de�ne a curve by these

blending functions with three control points, which we can regard as a �linear� generalized trigonometric
curve since the highest degree the trigonometric functions are in is one.

One interesting relationship among these functions is

v2 = 2uw, (2)

which enables

(u+ v + w)2 = u2 + 2uv + 4uw + 2vw + w2, (3)

and yields the �ve blending functions {u2, 2uv, 4uw, 2vw, w2}, associated with �ve control points. We
can de�ne a curve using these blending functions and regard it as a �quadratic� trigonometric curve since
the highest power of each blending function is now degree two.

In a similar way, we can extend blending functions of �degree� n with 2n+ 1 control points. We can
perform a recursive procedure called Gobithaasan-Miura's algorithm to evaluate a curve of any degree
similar to de Casteljau's algorithm avoiding the overhead of trigonometric function evaluation. This
means that it is not necessary to calculate the coe�cients of blending functions, or keep a coe�cient
table.

In order to analyze what kind of curve can be generated by a linear generalized trigonometric curve,
without loss of generality up to similarity, we specify its three control points as (−1, 0), (b, h), and (1, 0).
When h = 0, the curve becomes a line segument on the x-axis and we assume that h 6= 0. Then the
linear generalized trigonometric curve is given by

x = (b+ 1)S + (b− 1)C − b (4)

y = h(S + C − 1) (5)

By using the above equations and S2 + C2 = 1 and eliminating S and C, the following equation is
obtained:

h2x2 + (b2 + 1)y2 − 2b h xy + 2hy − h2 = 0 (6)

In the above euqation, the coe�cients of x2 and y2 are h2 > 0 and b2 + 1 > 0, repsectively and this
equation represents an ellipse [6]. Hence the linear generalized trigonometric curve represents an elliptical
arc cut out from the ellipse. Because of symmetry of the circle, if the lengths of the two line segments
connecting the control points are di�erent, no circular arc is represented. Furthermore if we assume that
the locations of the control points are made to be symmetrical along the y-axis by b = 0,

h2x2 + y2 + 2hy − h2 =
1

h2

(
x2 +

1

h2
(y2 + h)2 − 2

)
= 0 (7)

This equation does not represent a circle except for h = ±1 as explained below. When h = ±1, the two
line segments connecting the control points become the same length and orthogonal each other and the
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linear generalized trigonometric curve represents a quater circular arc. Therefore in order to express an
arbinrary circular or ellipical arc, its rationalization is necessary.

Although the left side of equation (6) includes the term of y and a constant, we can elliminate them
by translating the curve along the y-axis. Hence it is enough to analyze the following quadratic form:

h2x2 − 2b h xy + (b2 + 1)y2 = ( x, y )M

(
x
y

)
(8)

where

M =

(
h2 −bh
−bh (b2 + 1)

)
(9)

The eigenvalues λ0, λ1of matric M are given by

λ0 =
1

2

(
b2 + h2 + 1−

√
b2(b2 + 2(h2 + 1)) + (h2 − 1)2

)
(10)

λ1 =
1

2

(
b2 + h2 + 1 +

√
b2(b2 + 2(h2 + 1)) + (h2 − 1)2

)
(11)

Hence by applying an appropriate transformation, we obtain

λ0x
2 + λ1y

2 = r2. (12)

If h 6= 0, λ0 > 0 and λ1 > 0. Then the above equation represents an ellipse. Especially when λ0 = λ1, or
since b2 + h2 + 1 −

√
b2(b2 + 2(h2 + 1)) + (h2 − 1)2 = 0, b = 0 and h = ±1. So this represents a circle.

In this case, the linear generalized trigonometric curve becomes a quater circular arc. Even though we
assume b = 0 and locate the control points symmetrically, some speci�c circular arc is represented and
no arbitray circular arc is obtained. In the ellipse case, the number of the parameters of the implicit
function expressing an ellise is essentially 5 and one degree of freedom remains by specifying the postions
of the end points and tahgent vectors there (4 constraints). However the ratio of λ0 and λ1 is constrained
as the circle, we cannot represent an arbitray circular and elliptical arc and we need its rationalization.

Figure 1 shows examples of the linear generalized trigonometric curve. To clarify its properties,
we draw quadratic Bézier curves de�ned by the same control points at the same time. In Fig.1(a),
the locations of the control points are (0, 0), (1, 1) and (1, 0). In (b) and (c), only the �rst control
points are translated to (0, 1) and (0, 2). The generalied trigonomtric curves are drawn in blue and the
quadratic Bézier curves in orange. From these �gures, the generalized trigonometric curve has smaller
absolute curvature and are more rounded than the Bézier curve. Especially in (b), the two line segments
connecting the control points become the same length and orthogonal each other and its equation can be
simpli�ed as (sin π

2 t, cos
π
2 t). It's a quater circular arc.

Rational Quadratic Bézier Curve:

It is very common to represent a circular arc by a quadratic rational Bézier curve as

C(t) =
(1− t)2P 0 + 2(1− t)tσP 1 + t2P 2

(1− t)2 + 2(1− t)tσ + t2
(13)

where σ is a weight of P 1. For example when P 0 = (−1, a), P 1 = (0, 0) and P 2 = (1, a) for a given a, if
σ = 1/

√
a2 + 1 the curve becomes a circular arc.

Hence we de�ne a blending function w(t) as follows:

w(t) =
t2

(1− t)2 + 2(1− t)tσ + t2
(14)
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Fig. 1: Examples of linear GT curves with quadratic Bézier curves.

For this basis, the following equations is satis�ed:

v(t)2 = 4σ2u(t)w(t) (15)

Uniqueness Theorem of the Shape of the Curve:

The authors have proved a theorem called uniqueness theorem of the shape of the curve [5]. We describe
the theorem without proof. Please refer to [5] for its proof. We assume that for 0 ≤ t ≤ 1 a curve C(t)
is de�ned by three control points P 0, P 1 and P 2 as

C(t) = u(t)P 0 + v(t)P 1 + w(t)P 2 (16)

where 0 ≤ w(t) ≤ 1, 0 ≤ v(t) ≤ 1. If there is such a constant α that

v(t)2 = αu(t)w(t) (17)

for 0 ≤ t ≤ 1, then the following theorem is satis�ed:

Theorem 1. Uniqueness Theorem: The shape of the curve C(t) is determined by α exclusively and it

does not depend on the basis functions {u(t), v(t), w(t)} which are used to de�ne the curve.

Rational Generalized Trigonometric Curve:

Similar to the rational quadratic Bézier curve, with weight ω we de�ne the rational linear generalized
trigonometric curve as follows:

C(t) =
u(t)P 0 + v(t)ωP 1 + w(t)P 2

u(t) + ωv(t) + w(t)
(18)

= ur(t)P 0 + vr(t)P 1 + wr(t)P 2 (19)

where

ur(t) =
1− S

u(t) + v(t)ω + w(t)
, (20)

vr(t) =
S + C − 1

u(t) + v(t)ω + w(t)
, (21)

wr(t) =
1− C

u(t) + v(t)ω + w(t)
. (22)
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Then

vr(t)
2 = 2ω2 ur(t)wr(t) (23)

Therefore by comparing equations (15) and (23), and applying Uniquness theorem, when ω =
√
2σ, the

shapes of the linear generalized trigonometric curve and the quadratic Bézier curve are identical althogh
their parametrizations are di�erent. Therefore the rational linear generalized trigonometric curve can
represent an arbitrary elliptical arc as well as arbitrary arcs of parabola and hyperbola. Please refer to
[3] about conics as rational quadratics. Furthermore by the same reason, if we rationalize generalized
hyperboic curve and splines in tension, they can represent an arbitrary elliptical arc as well as arbitrary
arcs of parabola and hyperbola.

Conclusions:

We has shown that the linear generalized trigonometric curve de�ned by three control points generates
an elliptical arc, but cannot generate an arbitrary elliptic curve. Hence we have rationalized it to express
an arbitrary elliptical arc as well as arbitrary arcs of parabola and hyperbola. By the same reason, we
have shown that the rational generalized hyperboic curve and rational splines in tension can represent
an arbitrary elliptical arc as well as arbitrary arcs of parabola and hyperbola. In the future research we
will investigate other properties of these rationalized curves.
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