
334

Proceedings of CAD’21, Barcelona, Spain, July 5-7, 2021, 334-338
© 2021 CAD Solutions, LLC, http://www.cad-conference.net

Title:
We Don’t Really Need Quaternions in Geometric Modeling, Computer Graphics and Animation. Here
Is Why

Authors:
Fuhua (Frank) Cheng, cheng@cs.uky.edu, University of Kentucky
T. Lee Johnson, timothy.johnsonii@uky.edu, University of Kentucky
Anastasia Kazadi, ansm226@g.uky.edu, University of Kentucky
Ethan G. Toney, ethan.toney@uky.edu, University of Kentucky
Jonathan I. Watson, jonathan.watson@uky.edu, University of Kentucky
Alice J. Lin, lina@apsu.edu, Austin Peay State University

Keywords:
Quaternion, Rotation, Geometric Modeling, Computer Graphics, Computer Animation

DOI: 10.14733/cadconfP.2021.334-338

Introduction:
It has long been believed that quaternions are more efficient to use for 3D rotations than ordinary
rotation approach [10]. It is also commonly believed that the geometric meaning of quaternions is more
obvious[10;15]. The justification is two-folded. First, the 3×3 matrix representation of a 3D rotation is
expensive to use. For instance, to compose two rotations, one needs to compute the product of the two
corresponding matrices, which requires twenty-seven multiplications and eighteen additions. Secondly,
the matrix representation is redundant as only four of its nine entries are independent and it is not easy
to extract information on rotation axis and rotation angle from the matrix representation of a 3D
rotation. Quaternions, on the other hand, are cheaper to use. To compose two rotations, one only needs
to do nineteen multiplications and seven additions. One can also easily recover rotation axis and rotation
angle from the representation of a rotation quaternion.

While the above justification is indeed true for some aspects of the problem, it overlooked several
important features of ordinary rotation approach and these features are actually critical in judging
which technique should be used in a particular application. For instance, the matrix representation of a
3D rotation is important for processing geometric models with a large number of points/vertices.
Further study shows that a special matrix representation of 3D rotation is not only more efficient in
most applications involving geometric objects, but also more general than quaternion rotation when
extracting rotation axis and rotation angle of a 3D rotation is concerned. Even more surprisingly,
generating a smooth curve to interpolate a set of points on a 3D sphere can be done using ordinary
rotation as well if one knows how to interpolate rotations on a 3D sphere. Besides, matrix represented
3D rotations can be accumulated with other transformations such as translation, scaling, shearing and
reflection (in homogeneous coordinates) so one can accomplish all the transformations specified by the
user in modeling space (plus the projection process) with only one vector-matrix multiplication. This is
how we make real-time performance possible in computer graphics and computer animation. Therefore,
there is no reason to use quaternions in geometric modeling, computer graphics and computer
animation at all.

 The rest of the paper is arranged as follows. In section 2, definitions of quaternion and quaternion
rotation and properties of quaternion rotation will be reviewed, including interpolation of rotations
represented by quaternions. In Section 3, we study some important properties of ordinary rotation and
discuss applications of two important rotation representations. In Section 4, we discuss the relationship

http://www.cad-conference.net/
mailto:lina@apsu.edu

335

Proceedings of CAD’21, Barcelona, Spain, July 5-7, 2021, 334-338
© 2021 CAD Solutions, LLC, http://www.cad-conference.net

between general rotation and principal rotations. In Section 5, we show that interpolation of rotations
can actually be implemented using ordinary rotation as well. Concluding remarks are given in Section 6.

Quaternions and Quaternion Rotations:

We briefly review some basic properties of quaternions here [2;11].

Ordinary Rotation:
In this section we will discuss applications of two important rotation representations. The goal is to show
that underneath the surface, ordinary rotation has advantages that we sometime overlook.

Fig. 1: Ordinary rotation.

If a vector 𝑟 = (𝑟𝑢, 𝑟𝑣, 𝑟𝑤)𝑡 (or, a point 𝑃 = (𝑃𝑢, 𝑃𝑣, 𝑃𝑤)𝑡) is rotated about a unit vector �̂� = (𝒏𝑢, 𝒏𝑣, 𝒏𝑤)𝑡 for 𝜃
degree (see Fig. 1), the resulting vector

 𝑟′ = (𝑟𝑢
′, 𝑟𝑣

′, 𝑟𝑤
′)𝑡 (or, point 𝑃′) can be computed as follows

𝑟′ = (𝑟 ∙ �̂�)�̂� + 𝑐𝑜𝑠𝜃(𝑟 − (𝑟 ∙ �̂�)�̂�) + 𝑠𝑖𝑛𝜃(�̂�⨂𝑟)
 = cosθr⃗ + (1-cosθ)(r⃗ ∙ n̂)n̂ + sinθ(n̂⨂r⃗) (3-1)

𝑂 in Fig. 1 is the origin of the UVW-coordinate system.

It can be shown Eq. (3-1) has the following matrix form.

 r⃗' = [

ru
'

rv
'

rw
'

] = MR(θ,n̂)r⃗ = MR(θ,n̂) [
ru

rv
rw

] (3-2)

where 𝑀𝑅(𝜃,�̂�) is a 3×3 matrix defined as follows:

 𝑀𝑅(𝜃,�̂�) = [

𝑐𝑜𝑠𝜃 + (1 − 𝑐𝑜𝑠𝜃)𝒏𝑢𝒏𝑢 (1 − 𝑐𝑜𝑠𝜃)𝒏𝑢𝒏𝑣 − 𝑠𝑖𝑛𝜃𝒏𝑤 (1 − 𝑐𝑜𝑠𝜃)𝒏𝑢𝒏𝑤 + 𝑠𝑖𝑛𝜃𝒏𝑣

(1 − 𝑐𝑜𝑠𝜃)𝒏𝑢𝒏𝑣 + 𝑠𝑖𝑛𝜃𝒏𝑤 𝑐𝑜𝑠𝜃 + (1 − 𝑐𝑜𝑠𝜃)𝒏𝑣𝒏𝑣 (1 − 𝑐𝑜𝑠𝜃)𝒏𝑣𝒏𝑤 − 𝑠𝑖𝑛𝜃𝒏𝑢

(1 − 𝑐𝑜𝑠𝜃)𝒏𝑢𝒏𝑤 − 𝑠𝑖𝑛𝜃𝒏𝑣 (1 − 𝑐𝑜𝑠𝜃)𝒏𝑣𝒏𝑤 + 𝑠𝑖𝑛𝜃𝒏𝑢 𝑐𝑜𝑠𝜃 + (1 − 𝑐𝑜𝑠𝜃)𝒏𝑤𝒏𝑤

] (3-3)

Using eq. (3-2) for the computation of the rotation of a single point is more expensive than using

quaternions because one needs to compute the matrix 𝑀𝑅(𝜃,�̂�) first which requires 24 multiplications

and 10 additions/subtractions and then perform the vector-matrix multiplication which requires 9
multiplications and 6 additions, so totally one needs 33 multiplications and 16 additions/subtractions.
However, if one needs to perform the same rotation for many points, such as all the vertices of the mesh
representation of a car model or even just the mesh representation of a teaspoon model (100+ vertices),
then eq. (3-2) is a more efficient approach to use than using quaternions because one only needs to

compute the matrix 𝑀𝑅(𝜃,�̂�) once and then it can be used for the rotation of all the mesh vertices, so the

total cost is the construction of the matrix 𝑀𝑅(𝜃,�⃗⃗⃗�) plus the number of vertices 𝑛 times the cost of a

single vector-matrix multiplication: (24+9n) multiplications + (10+6n) additions/subtractions. while the

total cost of using quaternion rotation is (19n) multiplications + (7n) additions/subtractions. When 𝑛 is

http://www.cad-conference.net/

336

Proceedings of CAD’21, Barcelona, Spain, July 5-7, 2021, 334-338
© 2021 CAD Solutions, LLC, http://www.cad-conference.net

large, the construction cost of the matrix 𝑀𝑅(𝜃,�̂�) is a relatively small portion of the entire cost and can

be ignored. Hence, when 𝑛 is large, the computation cost for using quaternion rotation is (19n

multiplications + 7n additions) compared to (9n multiplications + 6n additions) for eq. (3-2).

Another advantage of eq. (3-2) is certainly its capability to be accumulated with other transformations
such as translation, scaling, shearing and reflection (in homogeneous coordinates-based representation)
so that one can accomplish all the transformations specified by the user in the modeling space (plus the
projection process) with only one vector-matrix multiplication. This is how we make real-time
performance possible in most applications in addition to relying on hardware-implementation of the
rendering algorithms.

General Rotation:
Given a principal rotation about the U-axis for 𝜃𝑢 degree, represented as 𝑀𝑅(𝜃𝑢), a principal rotation

about the V-axis for 𝜃𝑣 degree, represented as 𝑀𝑅(𝜃𝑣), and a principal rotation about the W-axis for 𝜃𝑤

degree, represented as 𝑀𝑅(𝜃𝑤). 𝑀𝑅(𝜃𝑢), 𝑀𝑅(𝜃𝑣) and 𝑀𝑅(𝜃𝑤) can be expressed in homogeneous coordinates-

based representation as follows.

𝑀𝑅(𝜃𝑢) = [

1 0
0 𝑐𝑜𝑠𝜃𝑢

0 0
−𝑠𝑖𝑛𝜃𝑢 0

0 𝑠𝑖𝑛𝜃𝑢

0 0

𝑐𝑜𝑠𝜃𝑢 0

0 1

] 𝑀𝑅(𝜃𝑣) = [

𝑐𝑜𝑠𝜃𝑣 0
0 1

𝑠𝑖𝑛𝜃𝑣 0
0 0

−𝑠𝑖𝑛𝜃𝑣 0
0 0

𝑐𝑜𝑠𝜃𝑣 0

0 1

] 𝑀𝑅(𝜃𝑤) = [

𝑐𝑜𝑠𝜃𝑤 −𝑠𝑖𝑛𝜃𝑤

𝑠𝑖𝑛𝜃𝑤 𝑐𝑜𝑠𝜃𝑤

 0 0
 0 0

0 0
0 0

1 0
0 1

]

If a point in homogeneous coordinates (𝑟𝑢, 𝑟𝑣, 𝑟𝑤, 1)𝑡 is rotated about the U-axis, the V-axis and the W-axis
for 𝜃𝑢, 𝜃𝑣, and 𝜃𝑤 degrees, respectively, the resulting point (𝑟𝑢

′, 𝑟𝑣
′, 𝑟𝑤

′, 1)𝑡 is obtained by pre-multiplying
(𝑟𝑢, 𝑟𝑣, 𝑟𝑤, 1)𝑡 by the matrices 𝑀𝑅(𝜃𝑢) 𝑀𝑅(𝜃𝑣) and 𝑀𝑅(𝜃𝑤) as follows.

 [

𝑟𝑢
′

𝑟𝑣
′

𝑟𝑤
′

1

] = 𝑀𝑅(𝜃𝑤)𝑀𝑅(𝜃𝑣)𝑀𝑅(𝜃𝑢) [

𝑟𝑢
𝑟𝑣
𝑟𝑤
1

] (4-1)

It can be shown that (4-1) can actually be replaced with a single ordinary rotation. The rotation is
performed about a rotation axis (unit vector) �̂� = (𝑎𝑢, 𝑎𝑣, 𝑎𝑤) defined as follows.

 �̂� =
(𝛼,𝛽,𝛾)

√𝛼2+𝛽2+𝛾2
 (4-2)

where

𝛼 = 𝑠𝑖𝑛 (
𝜃𝑢

2
) 𝑐𝑜𝑠 (

𝜃𝑣

2
) 𝑐𝑜𝑠 (

𝜃𝑤

2
) − 𝑐𝑜𝑠 (

𝜃𝑢

2
) 𝑠𝑖𝑛 (

𝜃𝑣

2
) 𝑠𝑖𝑛 (

𝜃𝑤

2
)

𝛽 = 𝑐𝑜𝑠 (
𝜃𝑢

2
) 𝑠𝑖𝑛 (

𝜃𝑣

2
) 𝑐𝑜𝑠 (

𝜃𝑤

2
) + 𝑠𝑖𝑛 (

𝜃𝑢

2
) 𝑐𝑜𝑠 (

𝜃𝑣

2
) 𝑠𝑖𝑛 (

𝜃𝑤

2
)

𝛾 = 𝑐𝑜𝑠 (
𝜃𝑢

2
) 𝑐𝑜𝑠 (

𝜃𝑣

2
) 𝑠𝑖𝑛 (

𝜃𝑤

2
) − 𝑠𝑖𝑛 (

𝜃𝑢

2
) 𝑠𝑖𝑛 (

𝜃𝑣

2
) 𝑐𝑜𝑠 (

𝜃𝑤

2
)

 (4-3)

The rotation angle 𝜃 is defined through the following triangular functions

 𝑠𝑖𝑛 (
𝜃

2
) = √𝛼2 + 𝛽2 + 𝛾2 (4-4)

 𝑐𝑜𝑠 (
𝜃

2
) = 𝑐𝑜𝑠 (

𝜃𝑢

2
) 𝑐𝑜𝑠 (

𝜃𝑣

2
) 𝑐𝑜𝑠 (

𝜃𝑤

2
) + 𝑠𝑖𝑛 (

𝜃𝑢

2
) 𝑠𝑖𝑛 (

𝜃𝑣

2
) 𝑠𝑖𝑛 (

𝜃𝑤

2
) (4-5)

What this says is, if one defines an ordinary rotation matrix 𝑀𝑅(𝜃,�̂�) as follows

http://www.cad-conference.net/

337

Proceedings of CAD’21, Barcelona, Spain, July 5-7, 2021, 334-338
© 2021 CAD Solutions, LLC, http://www.cad-conference.net

𝑀𝑅(𝜃,�̂�) =

[

𝑐𝑜𝑠(𝜃) + (1 − 𝑐𝑜𝑠(𝜃))𝑎𝑢𝑎𝑢 (1 − 𝑐𝑜𝑠(𝜃))𝑎𝑢𝑎𝑣 − 𝑠𝑖𝑛(𝜃)𝑎𝑤

(1 − 𝑐𝑜𝑠(𝜃))𝑎𝑢𝑎𝑣 + 𝑠𝑖𝑛(𝜃)𝑎𝑤 𝑐𝑜𝑠(𝜃) + (1 − 𝑐𝑜𝑠(𝜃))𝑎𝑣𝑎𝑣

(1 − 𝑐𝑜𝑠(𝜃))𝑎𝑢𝑎𝑤 + 𝑠𝑖𝑛(𝜃)𝑎𝑣 0

(1 − 𝑐𝑜𝑠(𝜃))𝑎𝑣𝑎𝑤 − 𝑠𝑖𝑛(𝜃)𝑎𝑢 0

(1 − 𝑐𝑜𝑠(𝜃))𝑎𝑢𝑎𝑤 − 𝑠𝑖𝑛(𝜃)𝑎𝑣 (1 − 𝑐𝑜𝑠(𝜃))𝑎𝑣𝑎𝑤 + 𝑠𝑖𝑛(𝜃)𝑎𝑢

0 0

𝑐𝑜𝑠(𝜃) + (1 − 𝑐𝑜𝑠(𝜃))𝑎𝑤𝑎𝑤 0

0 1]

 (4-6)

where 𝜃 and �̂� = (𝑎𝑢, 𝑎𝑣, 𝑎𝑤 , 1) are defined as above, then if we rotate (𝑟𝑢, 𝑟𝑣, 𝑟𝑤, 1)𝑡 about the rotation axis
�̂� = (𝑎𝑢, 𝑎𝑣, 𝑎𝑤 , 1) for 𝜃 degree, the result computed as follows is the same as the result computed using
(4-1).

[

𝑟𝑢
′

𝑟𝑣
′

𝑟𝑤
′

1

] = 𝑀𝑅(𝜃,�̂�) [

𝑟𝑢
𝑟𝑣
𝑟𝑤
1

]

This work shows that one can easily recover rotation axis and rotation angle for ordinary rotations from
the representation techniques presented in Sections 3 and 4 in a more general way than quaternion
rotation.

Interpolation of Rotations:
In this section, we show that to generate a closed path (space) curve C(u) on the 3D sphere S that passes
through a set of given points, instead of considering unit quaternions, we can simply consider unit 3D
vectors. The key here is to compute any point on a circular arc on 3D sphere S using ordinary rotation.
A technique that can interpolate rotations on the 3D sphere S is introduced here. With this technique,
we have the following procedure to generate a good C1-continuous curve on S that interpolates all the
given 3D unit vectors without using quaternion rotation at all.

 Q[0][0] = 𝑃1;

 Q[0][1] = 𝑎1;

 Q[0][2] = 𝑏2;

 Q[0][3] = 𝑃2;

 Current = Q[0][0];

 𝑢 = 0.0;

 ∆𝑢 = 0.01;
 for (i=0; i<100; i++) {

 𝑢 = 𝑢 + ∆𝑢;
 for (j=1; j<=3; j++) {

 for (k=j; k<=3; k++) {

 cos𝜃𝑗,𝑘 = 𝑄[𝑗][𝑘 − 1] ∙ 𝑄[𝑗][𝑘];

 sin𝜃𝑗,𝑘 = √1 − (𝑐𝑜𝑠𝜃𝑗,𝑘)
2
 ;

 //sin𝜃𝑗,𝑘 is negative if cos𝜃𝑗.𝑘 is negative

 Q[j][k] =
𝑠𝑖𝑛((1−𝑢)𝜃𝑗,𝑘)

𝑠𝑖𝑛𝜃𝑗,𝑘
Q[j][k-1]+

𝑠𝑖𝑛(𝑢𝜃𝑗,𝑘)

𝑠𝑖𝑛𝜃𝑗,𝑘
Q[j][k];

 }

 }

 Next = Q [3][3];

 Line (Current, Next); //Draw a line segment from Current to Next

 Current = Next;

 }

http://www.cad-conference.net/

338

Proceedings of CAD’21, Barcelona, Spain, July 5-7, 2021, 334-338
© 2021 CAD Solutions, LLC, http://www.cad-conference.net

Conclusions:
From the work shown in Sections 3, 4 and 5, one can see that anything quaternions can do, ordinary
rotation can do as well and actually more efficiently for most of the applications in geometric modeling,
computer graphics and computer animation. This is because for most applications in these areas, one
usually deals with geometric models with large number of points/vertices. Therefore, the techniques
presented in Section 3 is more efficient than using quaternions. Another important advantage of the
representation techniques presented in Sections 3 and 4 is its capability to be accumulated with other
transformations in homogeneous coordinates so that one can accomplish all the transformations in the
modeling space (plus the projection process) with only one vector-matrix multiplication, an advantage
quaternions cannot enjoy. The work presented in Section 4 also shows that one can easily recover rotation
axis and rotation angle for ordinary rotations from the representation techniques presented in Sections
3 and 4, and actually in a more general way. Most importantly, quaternion rotation commonly used in
generating smooth curves to interpolate a set of given points on 3D sphere S can be completely replaced
with ordinary rotation if a technique to interpolate rotations on 3D sphere S is used. Hence, quaternions
are not really needed in geometric modeling, computer graphics and computer animation.

Acknowledgement: The work of the first author is supported by NNSFC (GRANT NO. 61572020).

References:
[1] Besl, P. J.; McKay, N. D.: A method for registration of 3-D shapes, IEEE Transactions on pattern

analysis and machine intelligence, 14(2), 1992, 239–256.
[2] Clifford, W. K.: Preliminary sketch of bi-quaternions, Proceedings of the London Mathematical

Society, s1–4(1), 1873, 381–395.
[3] Dam, E. B.; Koch, M.; Lillholm, M.: Quaternions, Interpolation, and Animation. Technical Report

DIKU-TR-98/5, Department of Computer Science, University of Copenhagen, Denmark, July 17,
1998.

[4] Euler, Leonhard: Decouverte d'un nouveau principe de mechanique, Opera omnia (1957), Ser.
Secunda (Vol. 5):81{108, 1752}, Orell Fusli Turici.

[5] Faugeras, O. D.; Hebert, M.: The representation, recognition, and locating of 3-D objects,
International Journal of Robotics Research, 5(3), 1986, 27–52.

[6] Hamilton, W. R.: On quaternions; or on a new system of imaginaries in algebra, London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 25(3), 1844, 489–495.

[7] Horn, B. K. P.: Closed-form solution of absolute orientation using unit quaternions, Journal of
Optical Society of America A, 4(4), 1987, 629–642.

[8] Hungerford, T. W.: Algebra. Springer-Verlag, 1974.
[9] Jacobson, N.: Basic Algebra, W. H. Freeman & Co.,1985.
[10] Jia, Y.-B.: Quaternions and Rotation (Computer Science 477/577 Notes), Department of Computer

Science, Iowa State University. http://web.cs.iastate.edu/~cs577/handouts/quaternion.pdf
[11] Kantor, I. L.; Solodovnikov, A.S.: Hypercomplex Numbers, An Elementary Introduction to Algebras,

Springer-Verlag, 1989.
[12] Kuipers, J. B.: Quaternions and Rotation Sequences, Princeton University Press, 1999.
[13] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.: Numerical Recipes in C, 2nd Edition,

Cambridge University Press, Inc., 2002.
[14] Schwartz, J. T.; Sharir, M.: Identification of partially obscured objects in two and three dimensions

by matching noisy characteristic curves, International Journal of Robotics Research, 6(2), 1987,
29–44.

[15] Shoemake, K.: Animating rotation with quaternion curves, Computer Graphics, 19(3), 1985, 245
254.

[16] Zhao, F.; Wachem, B. G. M. van: A novel quaternion integration approach for describing the behavior
of non-spherical particles, Acta Mechanica, 224, 2013, 3091–3109.

http://www.cad-conference.net/

