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Introduction:
In this paper we introduce a novel algebraic lar-surf (Linear Algebraic Representation Surface extrac-
tion) filter, well founded on algebraic topology methods, to extract and smooth the boundary surface of
any subset of voxels arising from the segmentation of a 3D medical image.

Isosurface extraction to produce geometric models of surfaces from volumetric data is often used
for indirect visualization of the medical data or for flow modeling. Here we discuss an approach based
on basic algebraic topology and linear algebra, using linear spaces Cp of chains (of cells) of dimension
0 ≤ p ≤ 3 and the boundary matrix [∂3] : C3 → C2.

Input volumetric data are represented by a 3D voxel array and can be generated by segmentation
computed tomography (Fig. 2 left) and they are defined as a chain, i.e. as a vector from a linear space
C3 of 3-chains, represented in coordinates as a sparse binary vector.

A decomposition of the input volumetric data into small submatrices called “bricks” is performed,
then the binary coordinate vector of each interesting chain of voxels is generated, and its boundary is
computed by matrix multiplication times the boundary matrix producing the binary representation of the
boundary surface (surface which define boundary). The output is produced by a linear mapping between
spaces of 3- and 2-chains through the boundary operator ∂3 : C3 → C2. In particular, when the input set
of voxels is either not (4-)connected, or contains one or more empty regions inside, lar-surf generates
a non-connected set of closed surfaces, i.e. a triangle faces (Fig. 3).

Parallel data decomposition is used to compute the boundary surface patches within each of the bricks,
that are finally joined and smoothed via the Taubin algorithm [9] This work is based on LAR (Linear
Algebraic Representation) methods [3, 4] , and is implemented in Julia language, natively supporting
parallel computing on hybrid hardware architectures.

Representation Scheme:
With Boundary representations (‘B-reps’), where the solid model is represented through a representation
of its boundary elements, i.e. faces, edges and vertices; decompositive/enumerative representations [7],
are a decomposition of either the object or the embedding space, respectively, into a well-defined cellular
complex. In particular, a boundary representation provides a cellular decomposition of the object’s
boundary into cells of dimension zero (vertices), one (edges), and two (faces). Medical imaging can be
classified as the enumerative representation of cellular decompositions of organs and tissues of interest
[5], in particular, as subsets of 3D volume elements (voxels) from the 3D image.
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Fig. 1: Left image: the binary image of coboundary matrix built for a small volumetric data/brick with
shape (4, 4, 4). The number of rows is 4× 4× 4; the number of columns is dn (1 + n)d−1 = 3× 4× 25.
The right image shows a possible brick partitioning of a radiologic image. The evidenced 2D brick, of
size nd = 642, is sliced by B([2, 1, 64]) = image([128 : 172], [64 : 128)]

LAR aims to represent the chain complex [6] generated by a piecewise-linear geometric complex
embedded either in 2D or in 3D. In a few words, it gets a minimal characterization of geometry and
topology of a cellular complex, i.e. the embedding mapping µ : C0 → Ed of 0-cells (vertices), as well a
description of (d− 1)-cells as subsets of vertices, and is able to return the whole chain complex

C• = (Cp, ∂p) := C3

δ2←−
−→
∂3

C2

δ1←−
−→
∂2

C1

δ0←−
−→
∂1

C0.

and, in particular, any basis for linear chain spaces Cp, and any linear boundary/coboundary map ∂p
and δp = ∂>p−1 between them. The domain of lar is the set of chain complexes generated by cell
d-complexes (2 ≤ d ≤ 3). In algebraic topology a p-chain is defined as a linear combination of p-cells
with scalars from a field. We may get the (p− 1)-boundary ∂pcp of any p-chain cp, by multiplication of
the coordinate representation [∂p] of the boundary operator times the coordinate representation [cp] of
the chain in terms of such scalars, i.e. by a matrix-vector product [∂p][cp].

The geometry and topology required to display (Fig. 2) a triangulation of boundary faces is contained
in the geometric chain complex (geom, top) = (V, (EV, FE, CF)), where the geometry geom is given
by the embedding matrix V of vertices (0-cells), and topology top by the three sparse matrices (EV, FE,
CF) of coboundaries (δ0, δ1, δ2) of the chain complex (Fig. 1). The ordered pairs of letters from V,E,F,C,
correspond to Vertices→Edges→Faces→Cells into the Column→Row order of matrix maps of operators.

Construction of boundary matrix ∂d:
First, let us fix an ordering for all the cells of a partition of input data (with vertices V , edges E, pixels
F , and voxels C) i.e. for each 0-, 1-, 2-, and 3-cell. These orderings define the p-bases for the linear
spaces Cp of p-chains (0 ≤ p ≤ 3). We call Mp = (mi,j) the binary characteristic matrix of the p-basis,
expressed as subsets so that mi,j = 1 if and only if the j-th 0-cell cj0 belongs to the boundary of i-th
p-cell mi,j , and mi,j = 0 otherwise.

The product of binary matrices is not binary. In a 3D image, with cubic 3-cells and squared 2-cells
in-between, we have exactly six rows where ni,j = 4, since a cube (3-chain) has six boundary faces
(2-chains). The unit incidence coefficients in [∂3] are found by filtering with value 4.

Characteristic matrices:
The vertex indices for 0-, 1-, 2-, and 3-cells of a small (3x2x1) cubic grid follow. The function K transforms
the arrays of arrays VV, EV, FV, CV into sparse binary characteristic matrices M0, M1, M2, M3. Note that to
define Julia sparse matrices employs three arrays I,J,X of non-zeros for rows, columns, values.
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Fig. 2: The left image shows one slice with segmented organs from the Ircad dataset [8]. The other three
images show the surface of the liver and portal vein generated by lar-surf.jl package.

VV = [[v] for v=1:size(V, 2)];
CV = [[1,2,3,4,7,8,9,10],[3,4,5,6,9,10,11,12],[7,8,9,10,13,14,15,16],[9,10,11,12,15,16,17,18],
[13,14,15,16,19,20,21,22], [15,16,17,18,21,22,23,24]]

FV = collect(Set{Array{Int64,1}}(cat(map(CV2FV, CV))))
[[13,15,19,21], [1,2,3,4], [7,9,13,15], [13,14,15,16], [7,8,13,14], [1,2,7,8], [2,4,8,10], [7,8,9,10],
[3,5,9,11], [8,10,14,16], [15,16,21,22], [9,11,15,17], [3,4,5,6], [17,18,23,24], [11,12,17,18],
[1,3,7,9], [3,4,9,10], [9,10,15,16], [4,6,10,12], [13,14,19,20], [9,10,11,12], [15,16,17,18],
[19,20,21,22], [15,17,21,23], [16,18,22,24], [21,22,23,24], [10,12,16,18], [5,6,11,12], [14,16,20,22]]

EV = collect(Set{Array{Int64,1}}(cat(map(CV2EV, CV))))
[[15,17], [16,22], [6,12], [17,23], [18,24], [4,10], [3,4], [13,15], [11,12], [9,15], [13,19],
[1,7], [5,11], [5,6], [12,18], [8,14], [15,21], [17,18], [1,3], [2,4], [16,18], [2,8], [21,23],
[20,22], [1,2], [14,16], [10,16], [13,14], [19,21], [7,13], [9,10], [23,24], [11,17], [21,22],
[3,9], [3,5], [9,11], [7,9], [14,20], [7,8], [22,24], [19,20], [8,10], [15,16], [10,12], [4,6]]

function K(CV)
I = vcat( [ [k for h in CV[k]] for k =1: length (CV) ]...)
J = vcat(CV ...)
X = Int8[1 for k=1: length(I)]
return SparseArrays.sparse(I,J,X)

end
M0 = K(VV); M1 = K(EV); M2 = K(FV); M3 = K(CV)

Boundary matrices:
Boundary matrices between chain spaces are computed by sparse matrix multiplication of characteristic
matrices and by matrix filtering, produced in Julia via broadcast of vectorized integer division (.÷):

∂1 = M0 ∗ M′1 = M′1
∂2 = (M1 ∗ M′2) .÷ sum(M1, dims = 2)
∂3 = (M2 ∗ M′3) .÷ sum(M2, dims = 2)

Brick-level parallelism:
Let us assume that medical devices produce 3D images with lateral dimensions that are integer multiples
of some powers of two, like 256, 512, etc. Any cuboidal portion of the image B, called brick, is completely
determined by highest and lowest Cartesian indices of its voxels (Fig. 1 right). We assume B as a function
of its element of the lowest brick coordinates i, j, k ∈ [1 : n] and the brick lateral size n ∈ N:

B(i, j, k, n) := image([in : in+ n, jn : jn+ n, kn : kn+ n])

The granularity of parallelism, depending on the block size n, is further enforced by the computation of
a single boundary matrix [∂d(n)] depending on n.
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Workflow of lar-surf algorithm

In our experiments we applied the lar-surf
filter on 20 segmented volumetric data from
dataset Ircad [8] with lateral size 512× 512

and 74 – 260 slices. We compared the
performance of lar-surf with

marching-cubes algorithm implemented in
Python. Based on t-test with α = 0.99,

p = 8.74× 10−24 and s = −16.67 it can be
shown that the mean of time consumed by

lar-surf is significantly lower.

Discussion of method
The greatest amount of other methods for extraction of boundary surfaces from 3D data arrays—
including [10] and [11]—use implicit functions, defined by first averaging upon 3D mesh vertices the
lighting or brightness of incident voxels, and then by applying some marching cube algorithm in order to
traverse and to triangulate the iso-valued boundary patches.

Conversely, we use a binary labeling of the voxel sets of interested image segment, and the standard
medical 3D image array as solid representation. The set of boundary facets is extracted through spMV
(sparse matrix vector multiplication) of the [∂3] matrix times the binary vector labeling the voxels of the
segment. The boundary matrix is computed once and for all, sent to all workers (cores or nodes), then
used in parallel for all image brick extractions. This algebraic method can be immediately extended to
multi-material processing, as well as to design multi-material tissue layering for 3D printing.

In particular, we might organize a multi-material (or multi-organ) extraction, simply by multiplication
of the boundary matrix [∂3] : C3 → C2 times a binary matrix where the non-zeros elements on each column
represents either one of the materials, or one of the organs to be algebraically extracted by the filter. The
two surface patches common to two adjacent segments will be exactly coincident, and share the same
geometry and topology, with the only exception of each patch contours, where the influence of adjacent
patches induces each instance to be separated and round-off.

The main advantage of the approach discussed in this paper is given by its very algebraic nature; our
implementation does not need any kind of algorithmic graph traversal, of difficult parallelization, but
only the execution of standard algebraic computing kernels, and in particular the spMV and the spMspM
(sparse matrix–sparse matrix multiplication) kernels, nowadays efficiently implemented by tensor proces-
sors on Nvidia hardware. As we have shown, the parallelization, both shared-memory and distributed, is
also fairly easy and with good speed-up.

Conclusion:
We introduced a Julia implementation of an algebraic filter to extract from 3D medical images the
boundary surface of some specific image segment, described as a 3-chain of voxels. Translations from
Cartesian indices of cells to linearized indices, the computation of the sparse boundary matrices, and the
sparse matrix-vector multiplication are the main computational kernels of this approach.

We may show a good speed-up over marching-cubes algorithms. The current implementation em-
ploys Julia’s channels for multiprocessing. Parallelization makes a large portion of spared computational
cost. Moreover, we expect additional improvement in the future because our approach is appropriate for
SIMD (Single Instruction, Multiple Data) hybrid architectures of CPUs and GPUs, since only the initial
block setup of boundary matrix and image slices, as well the final collection of computed surface por-
tions, require inter-process communication. Currently, the software is being improved to gain a greater
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Fig. 3: Images of human liver: (a) portal vein (PV); (b) frontal view, showing also the part of PV
connected to the colon and stomach; (c) interlobular veins. Note that brick boundaries look flat.

speed-up using native Julia implementation CUDA.jl of Nvidia programming platform [1], and Julia’s
SuiteSparseGraphBLAS.jl framework [2] for graph algorithms with the language of linear algebra.
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