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Introduction: 
For years people have been trying to find ways to extend/modify the definition of Bezier curves so that 

one can change the shape of the curve without changing the control points of the curve [5-9]. But none 

of the works seem to be intuitive enough for practical applications in the field. A recent work by Chu 

and Zeng [10] was an attempt in that direction as well. A Beta-Bezier curve of degree n with shape 

parameter  is defined by  

C ,            

where  

,                                            (1) 

 

are the so-called Beta-Bernstein basis functions,  are 2D or 3D control points. 

When λ tends to infinity, Beta-Bezier basis functions reduce to Bernstein basis functions 

 

 

 

Hence the Beta-Bezier curves defined by Chu and Zeng [10] include Bezier curves as a special case. A 

few geometric properties of the curve, including a de Casteljau like algorithm similar to Bezier curve’s 

de Casteljau algorithm, are studied [10].  Conditions on -continuity at the joint of two adjacent Beta-

Bezier curve segments are discussed by Levent and Sahin [11]. Unfortunately, Chu/Zeng and 

Levent/Sahin did not realize that the definition of Beta-Bezier curves given in [10] is not the best 

possible for Beta-Bezier curves. 

In this paper, we present a new definition for Beta-Bezier curves and show that, with this new 

definition, properties of Beta-Bezier curves can be easily studied and computed. For instance, we are 

not only able to modify the shape of a Beta-Bezier curve without changing the control points of the 

curve, but also to perform all the properties of a Bezier curve such as recursive subdivision, converting 

to a B-spline representation, joining two curve segments with -smoothness and interpolating a set of 

data points with a composite cubic Beta-Bezier curves that is -continuous. An important observation 

is that in the cubic case, a Beta-Bezier curve is actually also a Bezier curve. 
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The rest of the paper is arranged as follows. In section 2, a new definition of Beta-Bezier curves is 

presented and basic properties of Beta-Bezier curves are studied. More advanced properties of Beta-

Bezier curves such as smooth ( -) joining of two curve segments, subdivision property, -continuous 

interpolation and B-spline conversion are discussed in Sections 3, 4, 5 and 6, respectively. Concluding 

remarks are given in Section 7. 

New Definition of Beta-Bezier Curves and Basic Properties: 
A Beta-Bezier curve of degree n with shape parameter  is defined as follows 

 

C ,                                                              (2) 

 

where  are 2D or 3D control points and 

 

 ,                                                        (3) 

 

 = ,  are Beta-Bernstein basis functions of degree n. The basis functions defined in (3) are 

related to the basis functions defined in (1) in that . We have the following immediate 

properties of Beta-Bézier curves: 

(i) When ,  reduces to a Bezier curve  of degree  defined as follows 

 

,                                                                    (4) 

where  

                                                                             (5) 

 

are Bernstein basis functions of degree n. 

(ii) A Beta-Bezier curve segment always starts at the first control point  and ends at the last control 

point . 

(iii) The sum of the basis functions of a Beta-Bezier curve equals one for any  and  （the unit sum 

property）. Hence Beta-Bezier curves also satisfy the “convex hull property”. 

(iv) A non-zero  applies a dripping force to the curve. The dripping force pulls the curve segment 

towards the base line segment  of the curve. When , the curve coincides with the base line 

segment.  See Figure 1 for the cases when ,  and  for a cubic Beta-Bezier curve 

segment. 

 
 

Fig. 1: Cubic Beta-Bezier curves defined by the same control points but with different shape parameters. 
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From this point on we will focus on degree 3 case only because that is what people are using for most 

of the applications.  

 

(v) A cubic Beta-Bezier curve can be represented as a cubic Bezier curve. 

Given a cubic Beta-Bezier curve  with control points , defined as follows 

 

,                                                                    (6) 

     

where  are Beta-Bernstein basis functions of degree 3 as defined in (3), through simple 

computation, one can rewrite  as a cubic Bezier curve as follows: 

 

,                               (7) 

where             

 

                                      （8） 

 

                                         （9） 

 

The computation process of  and  is shown in Figure 2. 

 

 
 

Fig. 2: Relationship between control points of a cubic Beta-Bezier curve and its Bezier control points. 

 

 (vi) Beta-Bezier curves have a de Casteljau-like algorithm [10]. 

When  the de Casteljau-like algorithm for Beta-Bezier curves reduces to the de Casteljau 

algorithm for Bezier curves. The de Casteljau algorithm for Beta-Bezier curves cannot be used in the 
recursive subdivision process of a Beta-Bezier curve though. Recursive subdivision technique for Beta-
Bezier curves is shown in Section 4. 

 
Smoothness Conditions between Adjacent Curve Segments: 

Two cubic Beta-Bezier curve segments can be joined together with -, - or -continuity. Details can 

be found in the full paper. 
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Recursive Subdivision: 
Given a cubic Beta-Bezier curve segment  as defined in (6) and a  by computing the 

value of  the curve is divided into two Beta-Bezier curve segments at , each with its 

own control points. Therefore, one can perform recursive subdivision on cubic Beta-Bezier curves. An 

example illustrating the situation for a shape parameter  and  is shown in Figure 3. 

 

 
 

Fig. 3: Subdivision of a cubic Beta-Bezier curve segment with shape parameter  at  

Interpolation using Composite Cubic Beta-Bezier Curves: 
Given a set of data points , , , ⋯, , one can construct a composite cubic Beta-Bezier curve to 

interpolate these points. The curve is - continuous. A closed curve example is shown in Figure 4. The 

interpolation process can be found in the full paper. 

 

 
 

Fig. 4: Interpolation using a composite cubic Beta-Bezier curve. 

 
Representation Conversion: 
A cubic Beta-Bezier curve segment can be represented as a cubic B-spline curve segment. 

Given a cubic Beta-Bezier curve  with control point set  and shape parameter , 

first convert it to a cubic Bezier curve as the one shown in (7) with  and  being defined as in (8) 

and (9). We then compute  ,  and  as follows: 

 

         ;     
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     ;      

;    

 

A cubic B-spline curve segment  defined using  ,  and  as its control points equals .  

Concluding Remarks: 
A new definition of Beta-Bezier curves is given. With the new definition, properties of Beta-Bezier 
curves are easier to study. It shows that Beta-Bezier curves not only have all the basic properties of 
Bezier curves, but also the capability of modifying the shape a Bezier curve segment or a C^2-
continuous, composite cubic Bezier curve without changing the control points of the curve. This is 
because in the cubic case a Beta-Bezier curve is actually also a Bezier curve. Consequently, we have a 
curve design technique more general than Bezier curves. Since C^2-continuous, composite cubic Bezier 
curves are equivalent to uniform B-spline curves, this means the new curve design technique is more 
general than uniform B-spline curves as well. 
 
Future works in this direction include the study of Beta-Bezier surfaces, extending the Beta shape 
parameter concept into B-spline curves and surfaces, and subdivision surfaces as well. 
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