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Introduction: 
Large-scale finite element models (FE models) used in car crash simulations, etc. require high-quality 
FE meshes in compliance with meshing specifications, such as the location and resolution of the 
meshing pattern’s features such as ribs and bosses to ensure simulation accuracy. However, the 
automatic feature-compliant meshing is not fully supported in commercial CAE software, requiring 
many manual operations and resulting in a high person-hour ratio to the whole CAE process. 
Extracting feature shapes, such as ribs and bosses, for which the meshing specifications have been 
strictly assigned from the complex shape of the product CAD model is particularly time consuming. 
Furthermore, the feature geometries are not uniquely shaped and are usually bounded by smooth and 
indistinct boundaries, often leading to oversights. Therefore, an automated feature extraction 
technique targeting a feature-compliant finite element meshing is strongly required where the features 
whose geometries are not identical to a reference feature shape but are similar to it can be extracted 
from a product’s CAD model. 

Researchers have proposed methods to extract feature shapes from CAD models to generate 
meshes of FE models [2-3][5]. However, three main problems persist. First, the feature extraction does 
not work robustly when the CAD model includes PDQ issues such as cracked or degenerated 
geometries. Second, features surrounded by complex and smooth boundaries, commonly found in 
casted or molded parts, remain difficult to detect. Finally, the extraction algorithm must be designed 
in an ad-hoc way for different feature types and even for features with similar shapes. Thus, it is 
difficult to apply these methods of feature extraction when developing a feature-compliant finite 
element meshing. 

This work therefore proposes a feature extraction methodology that allows the extraction of 
features containing nonidentical geometries similar to a reference feature shape from a target shape. 
In this methodology, the reference feature shape and target shape are represented by a set of shape 
descriptors defined on triangular meshes; extraction is performed by finding similarities between the 
descriptors on the reference feature shape and those of the target shape under the projective 
transformation. 

Similar Feature Extraction Method: 
Basic Concept 

The proposed similar feature extraction method exhaustively finds the features similar in shape and 
size to the reference feature shape pre-specified by the user from a target product shape represented 
by a solid model. The targeted features include ribs and bosses in casted or molded parts but are not 
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limited to them. This methodology aims to solve the three main identified issues via the approaches 
described below.  

• The representations of the target and reference feature shapes are converted from solid models 
to triangular meshes, which are used for extracting similar features. This enables a stable feature 
extraction even when a solid model contains PDQ-degraded geometries and/or when the feature 
shape boundaries are ambiguous. 

• Shape descriptors defined on triangular meshes are applied to feature extraction. This approach 
has been demonstrated to aid in object recognition and similar shape retrieval in meshes and 
point clouds. Using this descriptor-based approach, the extraction algorithm can be unified even 
for different feature types or features with similar shapes.  

• A feature to be searched is included to allow similar features to be matched with the reference 
shape under the projective transformation to allow for the extraction of feature shapes 
containing a parametric deformation relationship with the reference shape. Thus, this should 
allow for the extraction of features that are either identical or similar in shape to the reference 
shape.  

 
Outline of Similar Feature Shape Extraction Procedure 
The proposed similar feature extraction methodology comprises six steps and is summarized in Fig. 1. 
Steps 1 to 3 create the shape descriptors of the target and reference feature shapes; steps 4 to 6 then 
search for feature shapes similar to the reference shape.  

 

Step 1: Generating triangular meshes from a solid model 

A dense triangular mesh 𝑀𝐷
𝑇 = 〈𝑉𝐷

𝑇 , 𝑇𝐷
𝑇〉 (where 𝑉𝐷

𝑇 and 𝑇𝐷
𝑇 are a vertex and triangle set, respectively) and 

a sparse triangular mesh 𝑀𝑆
𝑇 = 〈𝑉𝑆

𝑇 , 𝑇𝑆
𝑇〉 are generated from a solid model 𝑆𝑇 of the target shape using a 

CAE preprocessor. Similarly, triangular meshes 𝑀𝐷
𝑅 = 〈𝑉𝐷

𝑅, 𝑇𝐷
𝑅〉 and 𝑀𝑆

𝑅 = 〈𝑉𝑆
𝑅, 𝑇𝑆

𝑅〉 of the reference feature 
shape to be extracted are also generated.  

Dense triangular meshes are necessary to calculate a feature shape descriptor with high accuracy. 
On the other hand, sparse triangular meshes are necessary to select a small number of distinctive 
feature key points with low calculation cost. 

Step 2: Generating the shape descriptors  

The shape index (SI) descriptor 𝑓𝑆𝐼,𝑖
𝑇  [1] and SHOT descriptor 𝑓𝑆𝐻𝑂𝑇,𝑖

𝑇  [7] are calculated at each vertex 

𝑣𝑆,𝑖
𝑇  (∈ 𝑉𝑆

𝑇)  of the sparse triangular mesh 𝑀𝑆
𝑇  to create an SI descriptor set 𝐹𝑆𝐼

𝑇 = {𝑓𝑆𝐼,𝑖
𝑇 }  and SHOT 

descriptor set 𝐹𝑆𝐻𝑂𝑇
𝑇 = {𝑓𝑆𝐻𝑂𝑇,𝑖

𝑇 }, respectively. To reduce the scale dependency of the SHOT descriptor, each 

descriptor 𝑓𝑆𝐻𝑂𝑇,𝑖
𝑇  is evaluated at 𝑣𝑆,𝑖

𝑇  using multiple radius of the support sphere. Similarly, the 

descriptor sets 𝐹𝑆𝐼
𝑅 = {𝑓𝑆𝐼,𝑖

𝑅 } and 𝐹𝑆𝐻𝑂𝑇
𝑅 = {𝑓𝑆𝐻𝑂𝑇,𝑖

𝑅 } of the reference feature shape to be extracted are created. 

 

Fig. 1: Procedure of the proposed similar feature shape extraction. 
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This SI descriptor 𝑓𝑆𝐼,𝑖 expresses the curvature of the local surface around a vertex 𝑣𝑖 as a single 

scalar value and has scale and rotation-invariant property. The SI descriptor 𝑓𝑆𝐼,𝑖 [1] is defined from the 

maximum and minimum principal curvatures λ1 and λ2 at 𝑣𝑖 as 

𝑓
𝑆𝐼,𝑖

=
1

2
−

1

𝜋
𝑡𝑎𝑛−1 (

𝜆1 + 𝜆2

𝜆1 − 𝜆2

) . (1) 

The SHOT descriptor is a 352-dimensional vector encoding the statistical distribution in the 
normal direction at local vertices around 𝑣𝑖 and is rotationally invariant [7]. 

Step 3: Selecting key points 
Key points are a subset of vertices on a triangular mesh where descriptor values for feature extraction 
are evaluated. Adoption of a small number of distinct feature key points has demonstrated to have 
increased object recognition and localization reliability and to have decreased processing time [4]. As 

such, when SI descriptor 𝑓𝑆𝐼,𝑖
𝑇  at vertex 𝑣𝑆,𝑖

𝑇 (∈ 𝑉𝑆
𝑇) of the target shape exhibits a surface with low distinct 

feature; i.e., plane, rut and ridge; that vertex is not selected as key point. Only remaining vertices 𝑣𝑆,𝑖
𝑇  

are adopted as key point set 𝐾𝑇 = {𝑘𝑖
𝑇}(⊂ 𝑉𝑆

𝑇). The SI and SHOT descriptors at key point 𝑘𝑖
𝑇(∈ 𝐾𝑇) are 

adopted as feature descriptor sets 𝐹𝑆𝐼(𝑘)
𝑇 = {𝑓𝑆𝐼(𝑘),𝑖

𝑇 }(⊂ 𝐹𝑆𝐼
𝑇 ) and 𝐹𝑆𝐻𝑂𝑇(𝑘)

𝑇 = {𝑓𝑆𝐻𝑂𝑇(𝑘),𝑖
𝑇 }(⊂ 𝐹𝑆𝐻𝑂𝑇

𝑇 ), respectively. 

Similarly, key point set 𝐾𝑅 = {𝑘𝑖
𝑅}(⊂ 𝑉𝑆

𝑅) and feature descriptor sets 𝐹𝑆𝐼(𝑘)
𝑅 = {𝑓𝑆𝐼(𝑘),𝑖

𝑅 }(⊂ 𝐹𝑆𝐼
𝑅 ) and 𝐹𝑆𝐻𝑂𝑇(𝑘)

𝑅 =

{𝑓𝑆𝐻𝑂𝑇(𝑘),𝑖
𝑅 }(⊂ 𝐹𝑆𝐻𝑂𝑇

𝑅 ) are generated for the reference feature shape. 

Step 4: Finding key point pair sets based on the descriptors 

For each SHOT descriptor 𝑓𝑆𝐻𝑂𝑇(𝑘),𝑖
𝑇  (∈ 𝐹𝑆𝐻𝑂𝑇(𝑘)

𝑇 )  at the key point 𝑘𝑖
𝑇  (∈ 𝐾𝑇)  on the target shape, N 

corresponding key points are searched from the key point set 𝐾𝑅 = {𝑘𝑗
𝑅} on the reference feature shape 

according to the ascending order of distance ‖𝑓𝑆𝐻𝑂𝑇(𝑘),𝑗
𝑅 − 𝑓𝑆𝐻𝑂𝑇(𝑘),𝑖

𝑇 ‖, thus creating a nearest key point pair set 

with respect to SHOT 𝐶𝑆𝐻𝑂𝑇 = {(𝑘𝑗
𝑅, 𝑘𝑖

𝑇)
𝑝

  | 𝑝 ∈ [1, 𝑁], 𝑘𝑖
𝑇 ∈ 𝐾𝑇}. Similarly, the nearest key point pair set with 

respect to SI  𝐶𝑆𝐼 = {(𝑘𝑛
𝑅, 𝑘𝑚

𝑇 )𝑞  | 𝑞 ∈ [1, 𝑀], 𝑘𝑚
𝑇 ∈ 𝐾𝑇} is generated by evaluating the distance ‖𝑓𝑆𝐼(𝑘),𝑛

𝑅 − 𝑓𝑆𝐼(𝑘),𝑚
𝑇 ‖.  

As the SI and SHOT descriptors express the local curvatures in different forms, the key point pairs that 
have higher similarity are then selected from 𝐶𝑆𝐻𝑂𝑇. This is done by selecting key point pairs from 𝐶𝑆𝐻𝑂𝑇 with a 
high correspondence between the SHOT and SI descriptors, meaning that there is at least one nearest key 

point pair in 𝐶𝑆𝐼 close to a given nearest key point pair 𝐶𝑆𝐻𝑂𝑇 within a distance threshold 𝛿, i.e. (dist(𝑘𝑖
𝑇 , 𝑘𝑚

𝑇 ) <

𝛿 ∧  dist(𝑘𝑗
𝑅 , 𝑘𝑛

𝑅) < 𝛿, (𝑘𝑗
𝑅 , 𝑘𝑖

𝑇) ∈ 𝐶𝑆𝐻𝑂𝑇 , ∃(𝑘𝑛
𝑅, 𝑘𝑚

𝑇 ) ∈ 𝐶𝑆𝐼 ). If a key point pair (𝑘𝑗
𝑅 , 𝑘𝑖

𝑇)  in 𝐶𝑆𝐻𝑂𝑇  satisfies this 

condition, it is stored in the new nearest key point pair set 𝐶𝑆𝑆 = {(𝑘𝑗
𝑅 , 𝑘𝑖

𝑇)}(⊂ 𝐶𝑆𝐻𝑂𝑇). 

Step 5: Clustering key points 

The key points 𝑘𝑖
𝑇 ∈ (𝐾𝑆𝑆

𝑇 = {𝑘𝑖
𝑇| (𝑘𝑗

𝑅 , 𝑘𝑖
𝑇) ∈ 𝐶𝑆𝑆}) of the target shape included in the key point pair set 𝐶𝑆𝑆 may 

be distributed to the multiple regions on the target shape that are similar to the reference feature shape. Thus, 
to increase the search efficiency of the random sample consensus (RANSAC) algorithm employed in step 6, 
Euclidean clustering is applied to the key points in 𝐾𝑆𝑆

𝑇 . Additionally, the close feature key point pair set 
𝐶𝐸𝐶𝐸 =∪ 𝐶𝐸𝐶𝐸,𝑙 is generated to aggregate the key points close to each other into one cluster 𝐶𝐸𝐶𝐸,𝑙. 

Step 6:  Extracting similar feature shapes using a random sample consensus (RANSAC) algorithm 

First, five of the key point pairs {(𝑘𝑖
𝑅𝐶 , 𝑘𝑗

𝑇𝐶)| 𝑘𝑖
𝑅𝐶 ∈ 𝐾𝑅𝐶 , 𝑘𝑗

𝑇𝐶 ∈ 𝐾𝑇𝐶  }  from one key point cluster 𝐶𝐸𝐶𝐸,𝑙  are 

randomly selected. The 4×4 projective transformation matrix [𝐻], which transforms the selected key point 

pairs 𝑘𝑖
𝑅𝐶(∈ 𝐾𝑅𝐶) into 𝑘𝑗

𝑇𝐶 (∈ 𝐾𝑇𝐶), is then estimated using Eqn. (2) and (3) via lower–upper (LU) decomposition. 

1

𝑤
[𝐻]{𝑄𝑅} − {𝑄𝑇} = {0}, (2) 

[𝐴]𝑇{𝐻} = {𝐵}, (3) 

where [𝐻] = [ℎ𝑖𝑗] is a 4×4 matrix with ℎ44 = 1, {𝑄𝑅} and {𝑄𝑇} are the 4×1 homogeneous coordinates of 

the key points 𝑘𝑖
𝑅𝐶 and 𝑘𝑗

𝑇𝐶 , 𝑤 is the fourth component of [𝐻]{𝑄𝑅}, i.e. ∑ ℎ4,𝑖𝑞𝑖
𝑅4

𝑖=1 , {𝐻} is the 15×1 column 

vector in which all components of the matrix [𝐻] are arranged in a column vector, and [𝐴] and {𝐵} are 
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the 15×15 matrix and 15×1 column vector calculated from the coordinates of 𝑘𝑖
𝑅𝐶 and 𝑘𝑗

𝑇𝐶 , respectively. 

Next, the transformed key point set 𝐾𝑅̃  is generated by applying the transformation [𝐻] to all key 

points other than the selected five in 𝐾𝑅𝐶 . The distance between each transformed key point in 𝐾𝑅̃ and 
the closest vertex of 𝑀𝐷

𝑇  is then evaluated, so that the estimated transformation [𝐻]  represents an 

appropriate one. For this judgement, we first search the nearest point of 𝑘𝑖
𝑅̃(∈ 𝐾𝑅̃) from 𝑉𝐷

𝑇 using the k-

Nearest Neighbor (kNN) algorithm and calculate its error ‖𝑘𝑖
𝑅̃ − 𝑣𝐷,𝑛𝑒𝑎𝑟𝑒𝑠𝑡

𝑇 ‖. Next, if the maximum error 

𝛿𝑚𝑎𝑥 = max(‖𝑘𝑖
𝑅̃ − 𝑣𝑛𝑒𝑎𝑟𝑒𝑠𝑡

𝑇 ‖)
𝑘𝑖

𝑅̃∈𝐾𝑅̃ of 𝐾𝑅̃ is less than the threshold 𝛿max_𝑚𝑖𝑛, we update 𝛿max_𝑚𝑖𝑛 and [𝐻]𝑚𝑖𝑛. 

If 𝛿max_𝑚𝑖𝑛  is not updated after the specified iterations of the updates, the estimation of [𝐻]𝑚𝑖𝑛 

concludes. Finally, [𝐻]𝑚𝑖𝑛 gives the best projective transformation matrix that transforms the reference 
feature shape to the similar featured shape portion on the target shape.  

 

Fig. 2:  Extraction results of ribs with simple shapes. 

Verification of the similar feature extraction: 
Extraction of similar ribs with simple shapes 

To verify the proposed methodology, feature extraction was performed from a target flat-plate model 
containing five similar ribs with simple shapes, as shown in Fig. 2. Of the five ribs, one was identical to 
the reference rib, whereas the others were similar but had a varied top and bottom width. As the 
estimated projective transformation allowed a high degree of freedom in deformation under the 
originally set parameters, sometimes only a portion of the rib along its longitudinal direction was 
matched with the reference feature. To avoid this partial matching problem, the SI threshold was 
adjusted to allow the key points around the edge portions exhibiting strong geometric features to 
remain. Additionally, upper and lower bounds of  the volume expansion ratio, scale value, and oblique 
distortion of the projective transformation [𝐻] were defined. As a result, the five ribs were correctly 
extracted, as shown in Fig. 2.  

Extraction of complex features with anisotropic scale 

A second verification procedure was then performed to determine if a feature shape with anisotropic 
scale differences from the reference feature could be extracted. A target shape close to a casted 
product with various feature shapes shown in Fig. 3 was selected. A portion of the target shape was 
cut out and deformed with anisotropic scaling to create the reference feature shape. The similar 
feature shape was successfully extracted, as shown in Fig. 3; however, the feasible scale range differed 
in the directions.  Features up to 1.5 times the width and 1.2 times the length  were extracted. This 
limitation is specified by the bounds of the distortion constraint on the projective transformation. 
Thus, expanding the anisotropic scale range would require extending the bounds of the constraints on 
the projective transformation. 

Extraction of multiple similar features 

A third extraction was then performed to verify the extraction of multiple features with similar shapes 
on the same target shape, as shown in Fig. 4. The reference feature shape was created by cutting out a 
local area in the target shape. Five of the six feature shapes were successfully extracted; the sixth 
could also be found by changing the mesh and the position of the reference feature. Future work 
should thus aim to improve the robustness of the extraction, possibly by increasing the mesh density, 
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equalizing the sampling density of key points bet ween the reference feature and the target shape, and 
finding the most suitable position of the reference feature shape for extraction. 

 

Fig. 3: Extraction results of complex features with anisotropic scales (Red: Reference, Black: Target). 

 

Fig. 4: Extraction results of multiple similar features. 
 

Conclusions: 

In this work, a method for extracting feature shapes similar to a reference feature from a target shape 
was proposed and verified for feature-compliant FE meshing. The method was based on the shape 
descriptor representation defined on triangular meshes, the matching operation between a reference 
feature shape and a target shape with the help of descriptors, and the estimation of the projective 
transformation between them. Future work will focus on ex tending this methodology to find the 
typical boss and rib shapes proposed by [6] and on developing a method that assigns an appropriate 
FE meshing operation to the extracted features that conforms to the specifications. 
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