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Introduction: 
Topology optimization is a numerical optimization method to design lightweight, superior performing 
mechanical structures. With the intensive development during the last a few decades, topology 
optimization has been proven an effective and robust tool in designing mechanical structures subject 
to a variety of physical discipline, e.g., solid mechanics, fluid dynamics, and thermal dynamics, etc [2]. 
Especially with the many manufacturability-related issued being addressed [4], topology optimization 
has now widely been accepted for industrial applications. 

Other than part scale applications, meta-material design through topology optimization has recently 
been focused [3,10], since extraordinary mechanical properties can be achieved such as negative 
Poisson’s ratio and negative thermal expansion. In addition, advancement of additive manufacturing 
(AM) technology makes the fabrication of the designed meta-materials no longer a tough issue, as 
demonstrated in literature [7,8]. Even though meta-material topology optimization has demonstrated 
the promise, there are still key issues to be addressed to further improve the performance and enhance 
the manufacturability, which are specified below: 

(1) Manufacturability issues still exist in meta-material AM and should be carefully addressed when 
developing the related optimization algorithm, e.g, the structural members should have the size 
larger than the AM printing resolution which otherwise cannot be successfully printed. Hence, 
in this article, the key problem of component length scale control will be discussed and 
addressed. 

(2) To improve the fatigue resistance of the meta-material formed structure, it is better to eliminate 
the sharp reentrant corners which are prone of stress concentration. This issue will be 
addressed by constraining curvatures of the concave boundary areas, because performing stress 
constrained optimization at the meta-material level is non-trivial. 

(3) Mutli-scale topology optimization is important since all the meta-material design techniques 
will finally be applied in the part-scale circumstance. Hence, a few part-scale design examples 
will be studied in this research by including the afore-mentioned geometric control techniques.  

So far, SIMP (Solid Isotropic Material with Penalization), level set, and ESO (Evolutionary Structural 
Optimization) are the main-stream topology optimization methods. From the authors’ opinion, level set 
method has the strongest capability in supporting geometric control since it employs the boundary 
contour-based structural evolution which can always capture the clear-cut structural boundary and 
access the related information [1,9]. Therefore, level set method will be employed in this study so that 
to better solve the afore-mentioned geometric control issues.  
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Main idea: 
Level set method 
Level set function Φ(𝐗): 𝑅𝑛  ⟼ 𝑅, represents any structure in the implicit form, as: 

{

Φ(𝐗) > 0,   𝐗 ∈  Ω/ ∂Ω

Φ(𝐗) = 0,   𝐗 ∈  ∂Ω      
Φ(𝐗) < 0,   𝐗 ∈  𝐷/Ω   

 (1) 

where Ω represents the material domain, 𝐷 indicates the entire design domain, and thus 𝐷/Ω represents 
the void. 

Generally, the level set field satisfies the signed distance regulation through solution of Eq. (2), where 
absolute of the level set value at any point represents its shortest distance to the structural boundary 
and the sign indicates the point to be either solid (> 0), or void (< 0). 

|∇Φ(𝐗)| = 1 (2) 

Meta-material Optimization problem  
Under the level set framework, the homogenized elasticity tensor of the representative volume can be 
calculated by Eq. (27). 

𝑬𝐵
𝐻 =

1

|𝑌|
∫ 𝑬𝐵(𝒆0 − 𝒆(𝒖∗))(𝒆0 − 𝒆(𝒖∗))

𝐷

𝐻(𝛷)𝑑Ω (3) 

where, 𝑬𝐵 is the elasticity tensor of the based material and 𝑬𝐵
𝐻 is the homogenized elasticity tensor. |𝑌| 

is the representative volume area, 𝒆0 is the applied unit strain fields, e.g. (1,0,0), (0,1,0), and (0,0,1). 𝒖∗ is 
the perturbed displacement field obtained by solving Eq. (4), which is Y-period. 

∫ 𝑬𝐵(𝒆0 − 𝒆(𝒖∗))𝒆(𝒗)
𝐷

𝐻(𝛷)𝑑Ω = 0, ∀𝒗 ∈ 𝑈 (4) 

Therefore, to design the meta-material with specified properties, the optimization problem is formulated 
as follows: 

min.   𝐽 =
1

2
(𝐸𝐵𝑖𝑗

𝐻 − 𝐸𝑖𝑗)
2 

𝑠. 𝑡.   𝑎(𝑬𝐵, 𝒖∗, 𝒗, Φ) = 𝑙(𝒗, Φ), ∀𝒗 ∈ 𝑈  

𝑉 =  ∫ 𝐻(Φ)𝑑Ω
𝐷

≤ 𝑉𝑚𝑎𝑥   

𝑎(𝑬𝐵, 𝒖∗, 𝒗, Φ) =  ∫ 𝑬𝐵𝒆(𝒖∗)𝒆(𝒗)𝐻(Φ)𝑑Ω
𝐷

 

𝑙(𝒗, Φ) = ∫ 𝑬𝐵𝒆0𝒆(𝒗)𝐻(Φ)𝑑Ω
𝐷

 

(5) 

where, 𝐸𝑖𝑗 is the target value of the homogenized 𝐸𝐵𝑖𝑗
𝐻. 

The Lagrange multiplier method is applied to solve the optimization problem, and the adjoint 
method is employed to calculate the sensitivity result, where the boundary velocities can be calculated 
as: 

𝑉𝑛 = −(𝐸𝐵𝑖𝑗
𝐻 − 𝐸𝑖𝑗)𝑬𝐵(𝒆0 − 𝒆(𝒖∗))(𝒆0 − 𝒆(𝒖∗)) (6) 

Then, the boundary velocities can be put into the Hamilton-Jacobi equation to perform the design update 
at an iterative basis, which belongs to the standard level set framework [9]. 

In Fig. 1, a few meta-material topology optimization examples are demonstrated. 
Component length scale control 
The length scale control functional proposed in the author’s previous work [6] is adapted to realize the 
length scale control effect; see Eq. (7). 

𝐷𝑇 = ∫ {[(Φ(𝐗) −
𝑇̅

2
)

+

]

2

− [(Φ(𝐗) −
𝑇

2
)

−

]
2

} 𝐻(Φ)𝑑Ω
𝐷

 

The notations: (𝑓)+ = 𝑚𝑎𝑥(𝑓, 0); (𝑓)− = 𝑚𝑖𝑛(𝑓, 0) 

(7) 
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where  𝑇̅ is the upper limit of the component length scale and 𝑇 is the lower limit of the component 

length scale. 

  
(a) (b) 

  
(c) (d) 

Fig. 1: Examples of the meta-material topology optimization, (a) 𝐸11 = 𝐸22 = 0.3 and 𝑉𝑚𝑎𝑥 = 0.4, the single- 

and 2*2 multi-unit views, (b) 𝐸11 = 𝐸22 = 0.5 and 𝑉𝑚𝑎𝑥 = 0.6, the single- and 2*2 multi-unit views, (c) 𝐸33 =

0.14  and 𝑉𝑚𝑎𝑥 = 0.4, the single- and 2*2 multi-unit views (d) 𝐸33 = 0.2 and 𝑉𝑚𝑎𝑥 = 0.6, the single- and 2*2 
multi-unit views 

  
(a) (b) 

Fig. 2: A comparative case study, (a) result from Fig. 1d without length scale control, (b) result with 
component length scale control (the red dot indicates lower limit of the component length scale) 

Then, the objective function in Eq. (5) is augmented into: 

𝑀𝑖𝑛.       𝐽(Φ) =  
1
2

(𝐸𝐵𝑖𝑗
𝐻 − 𝐸𝑖𝑗)

2
+ 𝑤𝐷𝑇(Φ) 

(8) 

where 𝑤 is the weight factor. 
Here, only the sensitivity result of the length scale control functional is demonstrated in Eq. (9), 

since the sensitivity result of the other part is already demonstrated in the last sub-section. 

𝜕𝐷𝑇

𝜕Φ
= ∫ 𝐺𝛿(Φ)𝑑Ω

𝐷

 

𝐺 = [(Φ(𝑿) −
𝑇

2
)

+

]

2

− [(Φ(𝑿) −
𝑇

2
)

−

]
2

 

(9) 
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+ ∫ [2 (Φ(𝒁) −
𝑇

2
)

+

− 2 (Φ(𝒁) −
𝑇

2
)

−

] 𝑑𝒁
𝑟𝑎𝑦𝜕Ω(𝒀)∩Ω

 

where 𝐘 is the boundary point, 𝑟𝑎𝑦𝜕Ω(𝐘) is the shortest ray connecting 𝐘 to the structural skeleton, and 𝐙 

is the point on the ray. The details about the sensitivity derivation and the ray concept are lengthy and 
thus will not be demonstrated. Interested readers can refer to [6]. 

The component length scale control is tested based on the Fig. 1d which includes many thin 
structural members, and the geometrically constrained result is demonstrated in Fig. 2b where the red 
dot indicates lower limit of the component length scale while no upper limit is applied. It can be clearly 
seen that the length scale requirement has been well satisfied. 
Curvature control to relieve stress concentration 
Under the level set framework, the boundary curvature can be easily calculated by: 

𝜅 = 𝛻 ∙ 𝒏 = 𝛻 ∙ (− 
∇𝛷(𝑿)

|∇𝛷(𝑿)|
) (10) 

So that, curvature control can be realized by adding the following constraint, where 𝑅 means the radius 
of the curvature. 

𝜅(𝑿) > −
1

𝑅1
,   𝑓𝑜𝑟 𝑎𝑛𝑦 𝑿 ∈ 𝜕𝛺 (11) 

However, it is non-trivial to calculate the sensitivity of this constraint, and thus, we inherited the idea 
from [5] where the curvature flow control technique is applied to address this constraint. Equation (12) 
demonstrates the curvature dependent velocities for mean curvature flow control, in which 𝑏 is a positive 
constant. If 𝜅 > 0, the interface will move in the direction of concavity; and if 𝜅 < 0, the interface will 
move in the direction of convexity. 

𝒗 = −𝑏𝜅𝒏 (12) 

To satisfy the local curvature constraints, we need to re-define the constant 𝑏, that: 

𝑏 = 0, 𝑖𝑓 𝜅(𝑿) > −
1

𝑅
 

𝑏 > 0, 𝑖𝑓 𝜅(𝑿) ≤ −
1

𝑅
 

(13) 

Then, the Hamilton-Jacobi equation is adapted into the convection-diffusion form, which is: 
𝛷𝑡 + 𝑽 ∙ ∇𝛷 = −𝑏𝜅|∇𝛷| (14) 

The curvature control is tested based on the Fig. 1b which includes many sharp reentrant corners 
(especially in the 2*2 view), and the geometrically constrained result is demonstrated in Fig. 3b where 
the red dot indicates lower limit of the radius of the curvature. It can be clearly seen that the curvature 
control constraint has been well addressed. 

 

  
(a) (b) 

Fig. 3: A comparative case study, (a) result from Fig. 1b without curvature control, (b) result with 
curvature control (the red dot indicates lower limit of the radius of the curvature). 
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Conclusion: 

Metal-material topology optimization is studied in this article, especially the geometric control issues 
including length scale control and curvature control. The specific algorithm details have been 
demonstrated and the effectiveness have been proved through comparative case studies.  

So far, the research on meta-material topology optimization in a part-scale circumstance is still 
under exploration, and the related contents will be presented in the full manuscript. Also, about the 
already introduced geometric control techniques, more numerical examples will be demonstrated in the 
full manuscript. 
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