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Introduction: 
Voxel based modelling of geometrical objects is receiving a lot of interest over the recent years. The 
simple topology of voxel-based models makes them an effective alternative to triangular meshes in many 
applications, including simulation of material removal [4], 3D printing [7], generation of porous surfaces 
[2], etc. However, many applications continue to rely solely on triangular mesh models and therefore 
voxelization is often required to convert them into alternate voxel-based representations.  

As shown in Fig.1, the core of the voxelization process essentially consists of the calculation of the 
intersection between the triangular facets of the mesh and a 3D grid obtained through the discretization 
of the bounding box of the tessellated geometry. This process involves numerous iterative procedures 
and thereby is computationally demanding, particularly for small-sized meshes and/or high-resolution 
voxel grids. To address this challenge, earlier studies made efforts to use the graphics pipeline – that is 
available in virtually all commercial graphics cards – in order to achieve fast voxelization during 
rendering passes [3, 8]. However, the fixed functions of the graphics pipeline led to inaccurate results 
in some applications [5] such that it was only after the relatively recent involvement of the general-
purpose computing performed on the graphics processing unit (GPGPU) when accurate yet fast 
voxelization became possible. To exemplify, NVIDIA’s compute unified device architecture (CUDA) 
platform [1] was used in [5] to achieve precise voxelization runtime with one order of magnitude faster 
than the conventional pipeline method [8]. However, since the applicability of CUDA is restricted to 
NVIDIA products, the development of fast, accurate and vendor-independent voxelization tools continue 
to remain a valid investigational objective.  

 

 
 

Fig. 1: Phases of the voxelization process. 
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Along this line of thoughts, OpenCL [6] represents an alternate GPGPU platform that can be used by a 
broad range of graphics hardware manufacturers. However – unlike CUDA – OpenCL has an inherent 
verbose nature and probably this made it somewhat less attractive for parallelization tasks. Building on 
this, the present study represents one of the first attempts made to test the viability of an OpenCL-
based voxelization engine in the context of non-NVIDIA hardware. It is also important to note here that 
the broader context of the current study is the development of a real-time graphic rendering module for 
a prototypical orthopedic virtual simulator to be used for training purposes.  

OpenCL Framework: 
A typical OpenCL program primarily consists of host and device applications (Fig. 2). In most common 
implementations, the device is a GPU that conducts the parallel computing task – termed as kernel – and 
is programmed in the OpenCL platform. By contrast, CPU represents the host – controlling the device 
and data flow by means of command queue – that is developed on the common C language. The kernel 
input data flows from host memory (RAM) to device global memory (i.e., the video memory of graphics 
card). The kernel divides the computing task at hand into multiple work-groups, each assigned to a 
processing core of the GPU. The work groups are further separated into multiple work-items that can 
be computed concurrently. The device relies on different memory levels for work-items and work-groups 
(i.e., private vs. local memory). Both types are much faster, but limited in size when compared to the 
global memory. Therefore, an efficient OpenCL code has to minimize the number of accesses to the 
global memory. In an ideal situation, this should happen only twice: when reading the input data and 
when writing the output. However, this goal may be hindered by limited local and private resources.  
 

 
 

Fig. 2: OpenCL device architecture. 

Implementation: 
Upon importing a model  with n  number of triangles, vertex coordinates are stored in an 1D float 

array of length 9n . The elements 9i  to 9 8i  correspond to the vertices of the i -th triangle. This 

enables a grouped storage of the facet coordinates that in turn guarantees a coalesced memory access 

constituting one of the prerequisites of high-performance. The voxel grid  is constructed by means of 

the axis-aligned bounding box (AABB) technique applied on , followed by a further subdivision into 

identical cubes with a preset size. The resulting voxels are indexed by means of integer triplets ( , , )x y z  

ranging from (0,0,0)  to ( 1, 1, 1)x y zd d d  and this enables an easy access to the spatial information within 

the grid. The grid itself is uniquely identified by three parameters including: the minimum corner of the 

grid 3

0
p , the number of voxels in each direction 3d  and the space diagonal of the voxels 

3p . The mapping between the voxel grid and a contiguous chunk of memory is used to store the 

voxel material information in an array of length x y zd d d  where the voxel 0( , , ( , )) ,x y z p d p  
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occupies location x x yi x yd zd d  of the array. Conversely, for a given i , voxel indices are determined 

by sequentially solving 
x y

z i d d , 
x y x

y i zd d d  and 
x y x

x i zd d yd .   

The voxelization kernel launches one work-item per triangle of . Each work-item starts with the 

coordinates of an assigned triangle, calculates the corresponding AABB lying within  and then inspects 

the intersection of each AABB voxel with the corresponding triangular facet of the mesh. Since the voxels 
located outside of AABB are – by default – in a disjoint condition with the triangular facets, the number 
of intersection tests will be reduced significantly when compared to the case of launching one work-

item per voxel of  (Tab. 1, Stanford bunny case study). Furthermore, each work item requires only the 

coordinates of a single triangle from the whole  data available in the global memory. This permits the 

transfer of the entire data associated with a work-item to local and private memory and in turn, this 
limits the number of accesses of the global memory to two. The implemented intersection test detects 
overlaps through a four-step process, one of which checks if triangle’s face overlays with the voxel and 

the rest evaluate if the projections of the triangle and the voxel are coincident with XY , XZ  and YZ  planes 
[5]. As soon as one of these steps fails, the assessed triangle/voxel pair is deemed as being in a non-
intersecting condition.  

 

Voxel Size 
(mm) 

Number of Intersection Tests  

Triangle-Based 
(TB) 

Voxel-Based 
(VB) 

Order of Magnitude Ratio 
(VB/TB) 

3 93 1,767,431 4.2789 

2 224 4,615,507 4.3140 

1 1,107 44,406,021 4.6033 

0.5 5,874 368,832,950 4.7979 

 
Tab. 1: Comparison between triangle- and voxel-based parallelization schemes. 

 
The technique described above was implemented into a high-performance OpenCL-based voxelization 
algorithm. As shown in Fig. 3, the OpenCL program starts with the identification of a device to be 
followed by kernel compilation in order to build a device-specific executable application. Meantime, the 
computing capabilities of the device are identified since they are required during the parallelization 
process. After OpenCL buffers and pointers have completed the host to global memory data transfer, 
the kernel is queued and the results are transferred to the host memory through the memory mapping 
technique. This data can be then further used in export operations or for graphical rendering purposes.  

 

 
 
Fig. 3: Core structure of an OpenCL algorithm to implement parallelization in the context of a 
voxelization task. 
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Results: 
Numerical experiments have been carried out to evaluate the efficiency of the developed OpenCL-based 
routine. The benchmarked models include both fine and coarse meshes with different domain sizes (Fig. 
4). To assess hardware performance, four different graphics hardware configurations were tested: 
NVIDIA GeForce 970 GTX (desktop), GeForce 960 GTXM (laptop), AMD Radeon R7 240 (desktop) and 
Intel HD Graphics 530 (integrated laptop). For this purpose, the execution time of the voxelization kernel 
was assessed – by means of the built-in profiling features of OpenCL, essentially allowing a CPU/RAM 
decoupled-evaluation – for various voxel sizes of each of the geometric models. These results were 
further compared with a baseline yielded by a single-thread implementation ran on an i7-6700K 
processor with 16GB DDR4 RAM.  

 

     

894 triangles 16301 triangles 100000 triangles 4006 triangles 470340 triangles 

(63.17, 39.31, 29.48) (15.55, 15.33, 12.06) (56.37, 25.21, 39.76) (21, 36.47, 36.50) (144.76, 137.24, 73.28) 

(a) (b) (c) (d) (e) 

 
Fig. 4:  Benchmarked models (including mesh and domain sizes): (a) Utah teapot, (b) Stanford bunny, (c) 
Stanford dragon, (d) surgical tool/reamer, and (e) scapula. 

 

Model 
Voxel 
Size 
(mm) 

Voxel Grid 
Dimension 

Voxelization Time (ms) 

GeForce 970 
GTX 

GeForce 960 
GTXM 

Intel HD 
Graphics 530 

Radeon R7 
240 

Single-thread 

Utah 
Teapot 

0.5 127, 79, 59 2.12 2.07 2.4 6.49 21 

0.25 253, 158, 118 13.57 13.1 14.66 25.9 108 

0.1 632, 394, 295 166.52 164.68 151.95 315.31 1081 

Stanford 
Bunny 

0.5 32, 31, 25 0.05 0.09 0.11 0.21 13 

0.25 63, 62, 49 0.08 0.16 0.19 0.22 18 

0.1 156, 154, 121 0.32 0.66 0.86 1.81 65 

Stanford 
Dragon 

0.5 113, 51, 80 0.31 0.72 0.76 1.77 85 

0.25 226, 101, 160 1.09 2.75 2.42 4.04 159 

0.1 564, 253, 398 10.17 25.55 19.44 34.52 757 

Surgical 
Tool 

0.5 42, 73, 73 0.77 0.75 0.82 2.46 25 

0.25 84, 146, 146 5.32 5.13 5.56 8.51 61 

0.1 211, 365, 366 71.89 68.84 69.42 109.23 412 

Scapula 

0.5 290, 275, 147 2.31 5.44 3.8 5.47 420 

0.25 580, 549, 294 11 25.79 13.3 24.14 868 

0.1 1488, 1373, 733 112.66 283.97 82.10 256.34 4913 

 
Tab. 2: Voxelization time associated with different models. 

 
The results presented in Tab.2 suggest that Utah teapot – despite having less facets – requires longer 
computation time than Stanford models, probably because of its larger domain. Interestingly, the 
analyzed surgical tool requires a voxelization time of almost six times larger than that required by the 
Stanford dragon and this is likely a consequence of the geometrical/topological complexity of the 
reamer. While the results suggest that both the attributes of the geometry and the performance of the 
graphics hardware play a significant role on the voxelization time, it can also be inferred that the 
parallelized OpenCL implementation clearly outperforms the traditional single-thread method.  

To further this idea, Fig. 5 ranks the average computing time across models and hardware by 
normalizing it to the time required by the single-thread CPU. The acquired results suggest that while a 
minimum 70% speed enhancement is observed for Radeon R7 240, the integrated Intel GPU performs 
slightly better. Even though the speed varies among the benchmarked models and graphics hardware, it 
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is evident that GPU-based parallelization can speed up voxelization with up to 99% (Stanford bunny on 
a GeForce 970 GTX). 

 
Fig. 5: Normalized representations of the voxelization time for OpenCL and single-thread based 
implementations. 

Conclusion: 
The aim of this study was to investigate the feasibility and effectiveness of an OpenCL implementation 
for high-performance and cross-platform voxelization of tessellated models. The numerical experiments 
conducted have revealed that while the performance of the developed OpenCL-based algorithm is 
dependent on the geometry of the model and computer hardware, a significant improvement is obtained 
in all cases when compared to a single-thread CPU-based implementation.  
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