
405

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 405-409
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

Title:
Cellular Automata Based Representation of 3D Patterns

Authors:
Jae K. Shin, jkshin@yu.ac.kr, Yeungnam University

Keywords:
Cellular Automata, 3D printing, F-code, Primitives, Pattern representation

DOI: 10.14733/cadconfP.2017.405-409

Introduction:
Typical CAD systems are based on a set of well-defined graphic primitives such as, for example, points
and lines for 2D and cube, cylinder and sphere for 3D applications. It will be clear that the more
diverse patterns we can get with the more diverse primitive sets we can use. Motivated from an
increasing emphasis on an aesthetic design of commercial products and with an increased power of 3D
printing that can fabricate complex shapes immediately from the CAD models, the present study
experiments on a new way of representing 2D/3D patterns using Cellular Automata (CA). CA has long
been used as a means for studying complex systems [7]. Wolfram expected that CA can explain the
simple rules the complex natural patterns emerge. For example, it was found that complex natural
patterns like snow crystal and skin pattern of sea shells can be explained in terms of simple rules of
CA [3]. However, obtaining complex patterns using CA in general is not an easy task [1]. In the
present paper, the author uses a special kind of CA [4,5] and suggests a systematic way of applying it
as a general tool for representing complex patterns.

Pattern Representation Using CA:
In general, Cellular Automat (CA) is defined on a tessellation system composed of uniform cells.
Commonly used cell types include square, honeycomb and triangles. For the present paper, square
type is assumed without loss of generality. A two-dimensional canvas can be defined as an X by Y
square cells. A cell state can be expressed in terms of a digits, 0, 1, 2, … . The number representing a
cell state will be called the color code for the cell. Color code 0 will be used for an empty cell. Different
set of color codes defined for a canvas will determine different patterns of the system.
 In CA, a cell can change its state depending on the cell states of its neighborhood. The two
most common types of neighborhoods are the von Neumann neighborhood and the Moore
neighborhood (See Fig.1). An updating rule or function determines the state of a cell in the next time
step as a function of the neighborhoods’ cell states of the current time step. In 2D, the Moore
neighborhood is composed of B=8 cells. Thus, a transition rule can be written as c=f(r(C)). Here c
denotes the value of the transition rule and C=(C1,C2,C3,,,CB) represents the cell states for the
neighborhood. It is generally assumed that the transition rule applies for all the cells with non-trivial
neighborhood. For the present study, the rule applies only for the empty cells with non-trivial
neighborhood, which will be called surface cells. Once a cell is determined its state with nonzero color
code, it does not change its states.
 Typically, the rule for updating the state of cells is the same for each cell and does not change
over time, and is applied to the whole grid or canvas simultaneously. In such a synchronous updating,
all the surface cells in the system are subject to change. For the present study, I use a kind of
asynchronous rule firing scheme conveniently named as one-rule firing CA [4,5]. In the one-rule firing
scheme, only the subset of surface cells whose rule value is the minimum among all the surface cells at
the current time step are subject to change.

http://www.cadconferences.com/

406

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 405-409
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

 (a) (b) (c)
 Fig. 1: (a) 2D von Neumann, (c) 2D Moore, Tab. 1: Example rule sets for a totalistic
 (c) 3D von Neumann neighborhood rule scheme.

The transition function c=f(r(C)) can be defined in many ways. For the present study, I use a weighted-

sum rule defined as the following: 
=

=
B

i

iiCwr
1

. When all of the weighting factors are 1, namely wi =1

for i=1 to B, we get the totalistic rule set [1]. For a two-state CA (Ci=0 or 1) with the Moore
neighborhood, we can have 8 different rule numbers r ranging from 1 to 8. For example, two set of
rules are shown in Table 1. Rule set 1 consists of 8 individual rules of f(1)=f(2)=f(3)=f(4)=1 and
f(5)=f(6)=f(7)=f(8)=0. When we use multiple colors or use different weights, the size of a rule set will
become very large.
 Diverse patterns can be generated using the one-rule firing CA. To grow a pattern, we basically
need two kind of data: an initial pattern and a rule set. In many cases, we start from a single cell filled
with a color code of 1. From the initial pattern, we apply the rules in a discrete time steps. If we have to
define or store a pattern, we need to remember the rule set or the rule table. When the size of a rule-
set is very large, we may have trouble in remembering the rule table. For complex rule scheme, the size
of a rule set easily exceeds 104 [4].
 In one-rule firing CA, however, the patterns can be easily stored in a series of codes (F-codes)
that were actually fired. An example F-codes and corresponding 3D patterns are shown in Fig. 2.
Starting from a seed pattern, you can use the F-code to grow-up the pattern, without a separate rule
table. Each of the patterns shown in Fig.2 are grown up to the time step T=20 or 30 starting from an
initial single seed with color code=1. The cases Fig. 2(a) and 2(b) shows that the same F-code, F=1, can
result in different patterns, depending on the rule schemes used. The number of patterns that can be
obtained from F-codes are almost an infinite. Simply listing a series of number will give an F-pattern.

 (a) F=1 (b)F=1 (c) F=3502101 (d) F=601054044211

Fig. 2: Example F-patterns grown from an initial single seed of color code 1. (a) Totalistic, T=20,
nE=1801, (b)W=[2,2,2,2,2,1], T=20, nE=21, (C) Totalistic, T=30, nE=1481, (d) Totalistic, T=30,
nE=1467.
 In addition to the initial patterns and rule table, we need more information for a pattern to be
completely defined. Table 2 lists the information required to define a pattern completely. The type of
tessellation, neighborhood topology and rule scheme are among the necessary information. In this
study, we discuss the weighting factor W of the totalistic rule set in detail.

Elements In this study Examples/comments

•Tessellation types •diamond •Diamond, Hexagonal, Triangular, etc.

•Neighborhood topology • Von Neumann •2D, 3D

http://www.cadconferences.com/

407

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 405-409
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

• Moore

•Rule Scheme •Weighted-sum •Symmetry of rules

•Type of functions

•Initial seeds •Single Seed •Locations and colors

•F-codes •Minimum rule firing

•Canvas size •Infinite

•Boundary conditions •Open •Aperiodic, periodic

•Repeating sequence •Number of Mixing, Life(T)

Tab. 2: Definition of patterns.

Primitives and Mixing Sequence:
Although there are an enormous number of F-patterns, it is still a question if a designer can use the
patterns systematically for designing something as he/she can do with a typical CAD system today. To
generally answer the question is beyond the scope of the present study. As a first step for such an
answer, I will show how simple patterns such as lines, rectangles and cubes can be represented in
terms of the F-patterns. For the 3D patterns in this study, von Neumann neighborhood is used. The six
neighborhood cells are numbered in the order of (+x,-x, +y, -y, +z, -z)(See Fig. 1(c)).
 Straight lines can be generated using specially designed weights for the weighted sum rule.
Starting from an initial seed of color code 1 and applying the pattern F1 in Table 3 repeatedly, we can
get a pattern stretching in the positive x-direction. For the pattern F1, rule weight of W= [U, 1, U, U, U,
U] and F-code of F=1 are used. The condition U>1 means that any value greater than 1 is sufficient for
the value U. Figure 3 explains how the patterns grow with the application of the one-rule firing system.
Similarly, we can define lines in the other main axes directions using different weights. Generating
lines in an arbitrary direction may not be possible with a single F-code. It can be a limitation combined
with the specific type of tessellation systems.
 Generating a rectangle of size n x m (assuming cell size is unit square) with a single F-code will
not be easy. However, it can be easily obtained mixing several F-patterns. If we want to generate a
rectangle of size n by m, it can be generated using the patterns F1 and F3 in Tab. 3, for example.
Staring from an initial seed, we can grow the pattern using F1 for n-1 time steps. This will give a line of
length n in the +x direction. From time step n, we continue to grow the pattern using F2. Applying F2
for one-time step, we can get a new line of length n just above the previous line in the +y direction.
Continuing F2 for m-1 time steps, we can get a rectangle of size n by m.

 In the present method of using CA, the process of generating mixing simple patterns will be
one of the key operations for building complex patterns. Simple patterns take the form of a single F-
code. It can be compared to the primitives in the conventional CAD system. The number of typical 2D
or 3D primitives is relatively small in commercial CAD packages. When the F-codes are used as
primitives, the number of primitives in the present system will be almost an infinite. In a typical CAD
system, there are many operations to build up complex objects out of the simple primitives. Boolean
operations are among one of them. In the present system, the key operation is the time-wise mixing.
From an initial seed, the patterns grow with the application of the F-codes differently designed for each
of the time steps.
 A pattern in the present study is generally defined with its primitives (F-code) and mixing
sequence. The mixing sequence can be expressed with a list of numbers. For example, the mixing
sequence for the rectangle of size n by m , as explained above, will be represented as S=[1 1 1 1…1 (m-
1 times) 2 2 ..2 (n-1 times)]. In the sequence, the number 1 and 2 represents the primitive number for
the case at hand. Or it can be simplified to S=1n-12m-1. Similarly we can generate a prism of size n by m
by p using primitive patterns F1, F3 and F4 in Table 3, with a mixing sequence of S=1n-12m-13p-1.
 Figure 5 shows an example of complex object obtained mixing two primitives. In Fig. 5, a
complete list of the geometric data for the object is given. The list means to be self-complete. No other
data is necessary for obtaining the object. The data exactly defines the location and color of every
single voxel exactly.

http://www.cadconferences.com/

408

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 405-409
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

Fig. 3: Growing of a line pattern F1. Left figue shows the pattern after time step 2 and the rule values of
the surface cells for the next time step. The cell with minimum rule numbe (r=1) will be fired next.

Pattern weight F-code

F1 +x line U,1,U,U,U,U 1 (U>1)

F2 -x lines 1,U,U,U,U,U 1 (U>1)

F3 +y line U,U,U,1,U,U 1 (U>1)

F4 +z line U,U,U,U,U,1 1 (U>1)

F5 (Fig. 5) 1,1,1,1,1,1 2520124

F6 (Fig. 5) 1,1,1,1,1,1 5305

Tab. 3: F-patterns used as a primitive in the present study.

Fig. 5: A mixed pattern and its self-complete description. Fig. 6: Cavity generation.

A Simple Application:
The patterns in the previous section are grown in an infinite canvas, without boundary. We can
introduce boundaries to generate interesting patterns. For example, we first generate a cavity of target
shape. And next growing F-patterns inside the cavity, we get patterns that has the shape of the cavity
but having different textures depending on the filling F-patterns. For an example, we molded a dish
using a cavity formed between two spheres whose centers do not coincide. The method for generating
a cavity for a 2D case is explained in Fig. 6. To generate a cavity in the form of a crescendo shown in
Fig. 6, we use two circles. By filling the cells of canvas outside of the cavity with a big color code, say
9999, and inside with color code of 0, we get the desired cavity. Starting to grow a pattern at an initial
seed of color code 1, we get patterns filled inside the cavity. Figure 7 shows the patterns obtained
using different F-codes. Only one F-pattern is used for each of the dishes shown in Fig. 7. Of course, we
could mix F-patterns if we wish. Observe that the dishes Fig. 7(c) and (d) differs in their F-codes at 6-th
digit. In many cases, similar F-codes result in similar shapes, but not always.
 It is already known that the patterns generated from CA can be fabricated using 3D printers [2,
6]. In Figure 8, we show some of the 3D printed patterns obtained in this study.

http://www.cadconferences.com/

409

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 405-409
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

(a) (b) (c) (d)

Fig. 7: Dishes generated by cavity filling, (a) F=212,T=93, nE*=10224 , (b) F=4110231620, T=166,
nE=5204 (c) F=23506142210001412, T=222, nE=5948, (d) F=23500142210,T=160,nE=5248 (*nE means
number of cells).

Fig. 8: 3D printed patterns.

Discussion and conclusion:
In the present study, we first applied F-codes for 3D F-patterns. Especially, we experimented on a
possibility of using F-patterns as a primitive for a 3D CAD system. Wolfram coined a phrase ‘a new
kind of science’ as a method of using CA as a tool for studying physics. The CA based description of
geometries could be similarly viewed as ‘a new kind of geometry’. It defines the geometry such as lines,
squares and cubes quite in a different way from those in the classical geometry. It is expected that the
pattern formation using the present system will have both advantages and disadvantages at the same
time. It will be hard to get the F-code representation for a pattern already existing in designers mind.
With almost an infinite number of primitives, the F-codes, it is expected the present system can get
patterns beyond his/her imagination. It means that the system could be very promising as a creative or
an aesthetic pattern design tool.

References
[1] De Garis, H.: Artificial embryology and cellular differentiation, Creative evolutionary systems,

Edited P. Bentley and D. Corne.Chap.12, Morgan Kaufmann, 2002.
[2] Kanada, Y.: Self-orgnized 3D-printing patterns simulated by Cellular Automata, Kanada, Y., in Y.

Suzuki and M. Hagiya, ed., Recent Advances in Natural Computing, 2016.
[3] Levy, S.: Artificial life, Vintage books, 1992.
[4] Shin, J.: Identifying patterns from one-rule firing cellular automata, Artificial Life 17(1), 2011,

21-32. https://doi: 10.1162/artl_a_00015
[5] Shin, J.: Application of cellular automata for a generative art system, Leonardo 49(5), 2016, 431-

435. https://doi:10.1162/LEON_a_00964.
[6] Southwell, R.: The universe of 3D Cellular automata, https://www.youtube.com/watch?v=

OxASD5xvgKI.
[7] Wolfram, S.: A new kind of science, Wolfram Media, 2002.

http://www.cadconferences.com/
https://doi:%2010.1162/artl_a_00015
https://doi:10.1162/LEON_a_00964

