
278

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 278-282
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

Title:
Rounding, Filleting and Smoothing of Implicit Surfaces

Authors:
Pierre-Alain Fayolle, fayolle@u-aizu.ac.jp, The University of Aizu, Japan
Oleg Fryazinov, ofryazinov@bournemouth.ac.uk, Bournemouth University, UK
Alexander Pasko, apasko@bournemouth.ac.uk, Bournemouth University, UK

Keywords:
Implicit Surfaces, Function Representation, Distance Function, Offsetting, Filleting

DOI: 10.14733/cadconfP.2017.278-282

Introduction:
Modern developments in geometric modelling allow for using a variety of geometry representations in
a wide range of applications. As new representations are introduced, one wants to adapt existing
processing techniques and methods used with the other representations. One example of such
techniques is filleting. It is well known how to perform rounding and filleting for parametric
representations, but there is limited prior work for implicit surfaces and procedural volumetric
objects.

In this work, we discuss possible implementations of filleting, rounding and smoothing operations
applied to objects defined in an implicit form by zero level-sets of continuous scalar fields (usually
called implicit surfaces). This representation is useful to define a wide range of primitives and
operations, including complex geometry such as procedural microstructures [3]. It is possible to
simply define these operations, if the scalar field corresponds to the distance to the surface of the
object of interest. In practice, however, the distance property can be obtained analytically only for a
very limited set of primitives and operations and is easily lost by some common operations in shape
modelling, such as, for example, non-uniform scaling. In this work, we propose to use a numerical
method to compute a signed distance field on the basis of an arbitrary continuous scalar field.
Offsetting the surface (an iso-level set of the scalar field) is then performed by considering different
iso-levels. By using repeated offsetting operations and re-distancing of the corresponding scalar field
(re-computing the distance function from the scalar field), we show how to implement rounding,
filleting and smoothing operations for general implicit surfaces. We demonstrate our approach with
experimental results and provide several examples, including CAD models and procedural
microstructures, defined by a real-valued scalar function.

Main idea:
Rounding, filleting and smoothing operations have offsetting with a constant radius in their core. The
mathematical basis for offsetting of solids is described by Rossignac and Requicha in [4]. Offset
operations can be considered a particular case of Minkowski sums. Minkowski sums and offsetting
have been mostly studied for polygonal meshes and point-clouds, but are less common for general
implicit surfaces because of the lacking distance property in the general case.

Our goal is to compute constant radius offsets for surfaces defined implicitly as

}0)(:{ == pp fS k
 for some given function f and 2=k or 3 . This can be done by

computing the signed distance function to S and considering a different iso-level than the zero iso-

level. Given the implicit definition of the surface, we try to perform such computations without

http://www.cadconferences.com/

279

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 278-282
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

meshing S or sampling points from it. Operations such as rounding, filleting or smoothing are all

defined in terms of this elementary offset operation.

In our method, we use normalization to create an initial approximation of the scalar field with
distance property (near the surface), then use the re-initialization method to numerically compute the
signed distance field.

Normalization and re-initialization

A function f is normalized to the order m if 1=




v

f
 and 0=




k

k

v

f
 for mk ...2= where v is the

unit normal to the surface. A normalized function behaves like the distance function near its zero
level-set. Methods for normalizing functions are discussed in detail by Shapiro [5]. Here, to initialize
the computation of the signed distance function, we use the first order normalization defined as

follows:
22

1

)()(

)(
)(

xx

x
x

ff

f
f

+
= .

Distance to a surface implicitly defined as }0)(:{ == pp fS k
 can then be obtained by

solving numerically the re-initialization equation proposed by Sussman et al. [6]:

|)|1)((


−=



fsign

t
, where)()0,(xx ft == and)(fsign is a sign function. To increase

stability of the numerical solution we use
22

)(
+

=
f

f
fsign with reasonably small and, as

discussed above, we use the first order normalization of f as the initial condition, i.e.

22)()(

)(
)0,(

xx

x
x

ff

f
t

+

== .

The forward Euler method is used for the time integration, and a first order upwind method is
used to compute the spatial derivatives, giving the following iterative scheme:

)1),,,().((.1 −−= −+−++ n

ijy

n

ijy

n

ijx

n

ijx

n

ij

n

ij DDDDHfsignt  (1)

where
n

ij is the value at the n -th iteration of at the node),(ji and H is the numerical Hamiltonian:







+

+
=

−+−+

+−+−

0)(,))(,)max(())(,)max((

0)(,))(,)max(())(,)max((
),,,(

2222

2222

fsigndcba

fsigndcba
dcbaH

with)0,min(),0,max(aaaa == −+
.

n

ijxD  and
n

ijyD  are upwind finite difference approximations

of the spatial derivatives given by
x

D

n

ij

n

jin

ijx


−
=

++



,1

,
x

D

n

ji

n

ijn

ijx


−
=

−− ,1
 and similarly for

n

ijyD  .

All these equations extend naturally to the 3D case.

Offsetting

For an object defined in an implicit form with the defining function  , an offset in positive direction

can be defined as rr +=)()(xx  , where r is an offset value. The offset value is signed and the sign

defines the direction of the offset. To make the offset a constant radius offset (corners are replaced by

http://www.cadconferences.com/

280

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 278-282
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

spherical patches and edges by cylindrical patches), we need the signed distance function, which is
computed by the re-initialization method as described above. In practice, we only need the distance
function to be accurate up to the distance r from the surface. This gives us an upper bound for the
number of iterations of the re-initialization method.

Applying level-set methods to compute offsets to a given implicit surface is certainly not novel.
See, for example, the work [2], which computes offset curves by contouring the zero iso-level of the
solution to the surface evolution equation at unit speed in the normal direction. However, our goal
ultimately is to apply multiple offsetting (and thus distance re-computation), which is not directly
possible with the precedent method.

One has to carefully select the offset distance r, since the zero level-sets of r may not necessarily

correspond to valid solids (regularized sets) for some values of r. In order to avoid any problem, we
can restrict the offset radius such that no boundary points after the offset are on the medial axis of
the original solid.

As an example of this offsetting technique, we compute a shell from a jaw bone model, which was
implicitly modeled by using convolution surfaces. The defining function for this model does not have
a distance property and therefore we use our method to obtain it. See Fig. 1. for the bone surface, and
the corresponding distance field visualized on a slice. The shell, obtained by subtracting an offset of
the original bone to itself, is shown in Fig. 2(a).

Fig. 1: An implicitly modeled jaw bone: (a) The meshed zero level-set, (b) Visualization of the distance
field to the bone surface on a slice.

The distance property of the object allows us to perform further operations on the shelled object, for
example, filling the interior of the object with procedural microstructures as discussed in [3]. Here, the
size of the rods is parameterized by the distance to the bone surface. The resulting shell with the
internal microstructures is illustrated in Fig. 2(b).

Fig. 2: Offsetting and filling with microstructures of the jaw model: (a) Jaw shell obtained by carving a
shrunk bone corresponding to an offset of 0.1, (b) The jaw shell with an internal microstructure.

Rounding, filleting and smoothing
Rounding a solid corresponds to smoothing all its convex sharp features (edges and corners) while
keeping the rest of the solid’s boundary unchanged. The rounding algorithm for implicitly defined
object can be defined as follows:

http://www.cadconferences.com/

281

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 278-282
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

1) compute the distance function  to the surface 0)(=xf

2) compute the offset to 0= by r in the negative direction: rr −=−)()(xx 

3) compute the distance function  to the surface 0)(=− xr

4) compute the offset to 0= by r in the positive direction: rr +=)()(xx 

In steps 1 and 3, the distance is computed by the re-initialization method defined above. The

resulting rounded surface is defined by the point set }0)(:{ =xx r

Filleting is the opposite operation to rounding. It corresponds to smoothing all concave sharp
features (edges and corners) while keeping the rest of the solid surface unchanged. Filleting is
obtained by offsetting by r in the positive direction then offsetting the previous solid by r in the
negative direction. Note that the value for the offset in filleting should reflect the geometry of the
implicitly defined object, otherwise removing the material by negative offsetting can result in a non-
valid solid object.

Smoothing a solid requires smoothing each sharp feature (corner or edge). It can be implemented
as a combination of rounding and filleting, where the order of these two operations is not important.
Assuming that we apply the rounding first, smoothing a solid is obtained by offsetting in the positive
direction by r then in the negative direction by r (this corresponds to the rounding operation), then
again offsetting in the negative direction by r and finally offsetting in the positive direction by r (this
corresponds to the filleting operation). We can combine the two offsets in the negative direction by r
into one offset in the negative direction by 2r. Note that smoothing requires the computation of the
distance function (at most) three times.

An alternative approach to the techniques above consists in replacing the first two steps (distance
computation and value offset) by computing the minimum of the function f in the closed ball centered
at x and of radius r. The constrained minimization can be done by the Alternating Direction of Method
of Multipliers (ADMM) [1]. While the function f is in general not convex, the method seems to converge
to the global minimum in practice.

The example in Fig. 3 illustrates the smoothing of a CAD object with sharp features as described
in this paragraph. The model was created by using set-theoretic operations with R-functions [5]
applied to implicitly defined geometric primitives such as cylinders and boxes. The field for the model
does not have a distance property. The input object (with a zoom on its bottom part) is shown in the
left images. The result of the smoothed implicit is shown in the right images. Note how the original
surface is kept while all sharp corners and edges (convex and concave) are rounded.

Fig. 3: A mechanical shape implicitly defined: (a) The original shape with a zoom of the bottom part, (b)
The shape with sharp features smoothed using a radius of 0.15.

http://www.cadconferences.com/

282

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 278-282
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

Computation Time

Tab. 1 summarizes the time taken for creating the examples shown in Fig. 2 and Fig. 3. The
implementation is in C++ and was run on a low-end desktop PC (3 GHz CPU and 4 GB of RAM). The
code is not particularly optimized, and contains lots of room for improvement. All the computations
were done on a grid with the resolution of 128×128×128. For all these examples, 10 iterations of (1)
were sufficient. The measured time corresponds to the time taken for initially sampling the scalar field
on the regular grid, computing the normalized value, applying one of the operations: offset or
smoothing, and applying additional operations (if any). It is easy to distribute the computation over
multiple threads. The second column of Tab. 1 shows the times taken when multiple threads are used.

 1 thread 4 threads

Jaw microstructure 3.85 1.91

Mechanical part 2.95 1.67

Tab. 1: Time (in seconds) for computing the different examples shown in this paper.

The first example (the jaw bone with microstructures) only needs the computation of one offset, which
requires only one distance re-initialization (for the distance to the shape of the jaw bone surface). In
addition, the distance to the shape is also used to control the rod shapes. The microstructures are
added at the end. In this example, the bottleneck is the sampling of the original field (representing the
jaw bone surface) on the regular grid.

The second example illustrates the smoothing operation, which requires computing three offsets. Each
offset requires computing the distance to the updated zero level-set.

Conclusions:
Offsetting, filleting, rounding and smoothing are important operations in any CAD system, especially
when dealing with mechanical parts. In this paper, we have proposed an approach for computing these
operations on geometry defined implicitly by continuous scalar fields (or implicit surfaces). Filleting,
rounding and smoothing are defined in terms of repeated offsets to implicit surfaces. The offset
operation is based on computing the distance to a given implicit surface, which is done by solving the
re-initialization equation given an initial approximation obtained with normalization. The approach
was shown to produce convincing results in a modeling framework dealing with implicit surfaces and
can be extended with further set of operations and primitives that require distance property of the
defining function.

References:
[1] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J.: Distributed optimization and statistical

learning via the Alternating Direction Method of Multipliers, Foundations and Trends in Machine
Learning, 3(1), 2011, 1-122. https://doi.org/10.1561/2200000016

[2] Kimmel, R.; Bruckstein, A. M.: Shape offsets via level sets, Computer-Aided Design, 25(3), 1993,
154-162. https://doi.org/10.1016/0010-4485(93)90040-U

[3] Pasko A.; Fryazinov O.; Vilbrandt T.; Fayolle P.-A.; Adzhiev V.: Procedural function-based
modelling of volumetric microstructures, Graphical Models, 73(5), 2011, 165–81.
https://doi.org/10.1016/j.gmod.2011.03.001

[4] Rossignac, J.; Requicha, A.: Offsetting in solid modelling, Computer-Aided Design, 3(2), 1986,
129-148. https://doi.org/10.1016/0167-8396(86)90017-8

[5] Shapiro, V.: Semi-analytic geometry with R-functions, Acta Numerica, 16, 2007, 239-303.
https://doi.org/10.1017/S096249290631001X

[6] Sussman M.; Smereka P.; Osher S.: A Level Set Approach for Computing Solutions to
Incompressible Two-Phase Flow, Journal of Computational Physics, 14, 1994. 146–159.
https://doi.org/10.1006/jcph.1994.1155

http://www.cadconferences.com/
https://doi.org/10.1561/2200000016
https://doi.org/10.1016/0010-4485(93)90040-U
https://doi.org/10.1016/j.gmod.2011.03.001
https://doi.org/10.1016/0167-8396(86)90017-8
https://doi.org/10.1017/S096249290631001X
https://doi.org/10.1006/jcph.1994.1155

