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Introduction: 
Terrain physical models are needed in many application domains of GIS, such as town planning, 
landscape architecting, land-use planning, transportation planning, military strategy planning, 
watershed and geological education, etc. Rapid Prototyping (RP) is a kind of advanced manufacturing 
technology which builds physical models layer by layer in accordance with the Computer Aided Design 
(CAD) models. RP system use Stereo Lithography (STL) file format to fabricate physical models, which 
express the geometric surface information through a set of connected triangle facets. Whereas the GIS 
data is mostly stored as Digital Elevation Model (DEM) file format, which use elevation data to describe 
the terrain surface information through a set of regular grids or irregular triangles. Therefore, when 
using the RP system to fabricate a terrain physical model, the GIS data should be converted to the STL 
file firstly.  

Many researchers have tried to use RP techniques to make terrain physical models from the GIS 
data. Most of them converted the GIS data to the STL file through several intermediate stages by using 
commercial software or developed program. However, these methods did not simplify and optimize 
the terrain data, which makes the STL file enormous and faulty. The manufacturing efficiency and 
quality of terrain physical models is lower. This paper presents a methodology to convert the DEM file 
of a terrain model directly to the STL file, which can be processed and fabricated by RP system, 
various formats of the DEM file can be converted into the STL file using the presented methodology 
directly. The model data was simplified and optimized according to the scale and the preset threshold. 
As a result, the processes of data conversion are eliminated and the volume of model data is reduced 
effectively. Furthermore, terrain physical models can be fabricated by RP system in less time and less 
cost. 

Main Idea: 
At present, RP software generally uses a standard STL file format to describe 3D models. This kind of 
STL file uses a set of triangle facets to approximate the surface of 3D model, which has various 
advantages, for instance, simple repetitions and expedient treatment method. The disadvantage is that 
there are copious redundant data to ensure the machining precision of large-sized models. The 
number of triangle facets must be quite big. Take a model with 1201×1201 elevation points for 
example, the number of triangle facets is about 2.88 million after transformation, and the STL file 
converted from this DEM file can be up to 800MB. For avoiding the ambiguity caused by data 
redundancy and shortening the time of RP manufacturing, the DEM data must be simplified in advance 
according to the scale given by users, and create a new STL file with less facets. The proposed method 
can read various DEM file formats and create 3D STL files by adding base and walls around DEM data. 
Furthermore, the simplifying algorithm can reduce the number of triangle faces on the basis of model 
quality assurance. The specific conversion process is shown in the figure 1. 
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Fig. 1: Conversion process from DEM data to 3D STL model. 

 

Creation and Correction of Elevation Grid 
Before direct transformation of STL file, those three typical DEM formats should be identified and 
processed standardly, since they have the basic same key description of the net structure, this paper 
converts CNSDTF DEM and Virtuozo DEM to USGS DEM before further handling. Firstly, extract 
threshold information of the three DEM file formats according to their threshold rules, the common 
part of their threshold information include plane coordinates, plane resolution and the number of rows 
and columns, which is key information of triangle DEM storage structure. Secondly, screen threshold 
information and extract the common part of DEM formats, namely consensus information. Finally, in 
accordance with storage rules, rewrite the corresponding data to obtain USGS DEM. 

As is shown in the figure 2, 7.5-minute USGS DEM is a quadrilateral elevation grid, but not a quadrate 
or rectangle geographical area. DEM file is formed by a set of profiles, the first y-coordinate of each 
profile is different. In order to facilitate the conversion of triangle elements, the quadrilateral elevation 
must be converted to rectangle grid firstly. The elevation data can be transformed to rectangle 
elevation grid as figure 3 by inserting null_data to those new grid points without elevation data. The 
parameter null_data is given a false negative data -32767, indicating those grid points without 
elevation data are not physical points. Internal vacant points and external redundant points need to be 
examined after the creation of rectangle elevation grid. 

 

Fig. 2: Final elevation grid. 

 

Optimization of Terrain Surface Model 
The revised elevation grid data should be simplified according to print scale  and accuracy  given by 

users to reduce the number of elevation points. Elevation points of 7.5-minute USGS DEM are ordered 
by 30-meter intervals, assume the print scale is 1:60000 (1 millimeter represent 600 meters), the print 
accuracy of x-direction and y-direction is 0.1 millimeter, the real resolution is only 60 meters. 
Therefore, elevation points of grid can be simplified directly to remove indistinguishable data points 
(As shown in figure 3). 
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Fig. 3: Elevation grids after the first   Fig. 4: Elevation grids after the second simplification. 

simplification.             

 
Since the interval between every two elevation points through x-direction or y-direction is fixed, this 

paper introduced a new high weight K to measure height difference between neighboring elevation 
points, and use the given threshold to simplify the elevation grid secondly and correct errors. For 
instance, the number of triangle facets converted from the elevation grid in the figure 4(a), equals to 72, 
after second time simplifications, the number of triangle facets will be reduced dramatically,   equals 
to 9 as is shown in the figure 4(c). 

In order to ensure that created triangle facets corresponding to the real terrain surface, it is 
necessary to identify the concave-convex characteristic of elevation grids while converting two time 
elevation grid to triangle facets. As for no planar elevation grid, link different diagonals will obtain 
antipodal terrain structures. This paper calculates dihedral angles of polygonal grid through curvature 
analysis (Hao J et al., 2011), and regard them as the parameter of concave-convex characteristic to 
divide elevation grid element. As is shown in the figure 5, the data volume of elevation data is reduced 
effectively after two time simplifications, and the accuracy of model remain fits production 
requirement. 

（a）triangle facets of 
terrain surface model after 
the first simplification

（b）triangle facets of 
terrain surface model after 

two simplifications  
Fig. 5: the terrain surface model after the first simplification and the model after the second 

simplification.   

 

Creation of 3D terrain models 
STL file of terrain surface model can be obtained by storing these triangle facets according to the file 
format, the STL file of 3D terrain model cannot be completed until adding the base and walls. The 
altitude of base should be less than the minimum elevation value, which can be directly funded from 
record A of DEM file. The altitude of base of STL model equals to the minimum elevation value minus 
the height of walls h given by users, elevation points of base are correspond to points of terrain 
surface, that is to say, they have the same x and y value, different z value.  

Using the minimum perimeter method to build triangle facets of base, the specific process is as 
follows: regard the corner point with the minimum x and y values as the starting point, select its 
neighboring points of x/y-direction to form the first triangle facet; then create a set of new triangle 
facets based on the two points and contrast their perimeters, choose the facet with the minimum 
perimeter to store; by that analogy until triangle facets cover the entire base as is shown in the figure 
6(b). Since border points of base are correspond to border points of terrain surface, the triangle facets 
of walls can be created speedily through linking diagonals directly (as is shown in the figure 6(c)). What 
must be noticed is that the direction of all normal vectors of triangle facets of base and walls point to 
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the bottom of model, the red surface of triangle facets represents inner model, the grey surface of 
triangle facets represents exterior model. The final STL model is shown in the figure 6(d). 

(a) create terrain base

h

(b) convert base to triangle facets (c) convert walls to triangle facets (b) create 3D STL model  

Fig. 6: 3D terrain STL model. 

 

Experimentation and Discussion 
The experiment took samples of a coastal region of China, which covers an area of 47 square 
kilometers and contains a chain of mountains, a mountain brook, flattened seashores and widespread 
ocean (as is shown in the figure 7). Corresponding file was downloaded from the official website of 
USGS (http:/www.usgs.gov), chose 7.5-minute USGS DEM file format with 30-meter intervals and the 
number of elevation points is 51967.  

 

 

Fig. 7: 3D terrain map of sample area (from Google Earth). 

 

According to the optimization algorithm given by this paper, the real resolution is simply 60 meters, 
thus the number of elevation points will be reduced to 12991. What should be done next is building 
optimized STL surface model and adding triangle facets of base and walls. Since the accuracy of RP 

system in z-direction is high (resolution is 0.03mm, threshold   equals to 3), the threshold value of 

elevation was assigned as 54 meters, those elevation points whose high weights are less than 54 meters 
were simplified. The 3D terrain STL model displayed in Magics RP is shown in the figure 8, three 
localized regions were selected to zoom into view. The region A represents a mountain peak with 
regular height changes, the density and size of its triangle facets are relatively steady; the region B 
represents a junction of flat ground and mountain valley, distributions of triangle facets have obvious 
differences; the region C represents ocean with relatively small height changes, triangle facets are big 
in size and little in number. 
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Region A Region B

Region C

          

Fig. 8: STL model of sample area.              Fig. 9: Physical model of sample area. 
 

The number of triangle facets converted directly from DEM file without any simplification is 
675,142,272; after the first simplification, the number was reduced to 42,191,520; after the second 
simplification and adding base and walls, the final number became 964,372, which is just 1.4‰ of the 
origin number. STL file was stored in ASCII format, and the size is 189MB. The 3D STL file was 
downloaded into HRPS-IIA system to fabricate terrain physical model, which is shown in the figure 9. 

Conclusions: 
This paper proposed a method and a terrain data simplify algorithm that can convert USGS DEM data 
that expressing 3D terrain surface to 3D STL file, and developed corresponding program by VC++ 
software. Which can be used to transform five types of USGS DEM formats and create 3D models 
directly, omitting intermediate processes and saving corresponding data loss. A coastal region of China 
was chosen for verification, USGS DEM data of this region was transformed successfully to 3D STL 
model, proving the effectiveness of this convert program. The STL file was downloaded into Magics RP 
for visual displaying and repairing, the final STL file was downloaded into HRPS-IIA system to fabricate 
a terrain physical model. Virtual 3D terrain was built quickly and accurately, which can be used in the 
field of designing, planning and education.  
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