
303

Proceedings of CAD’15, London, UK, June 22-25, 2015, 303-307
© 2015 CAD Solutions, LLC, http://www.cad-conference.net

Title:
A Web Repository to Describe and Execute Shape Processing Workflows

Authors:
Marco Attene, Marco.Attene@ge.imati.cnr.it , IMATI-GE, CNR, Genova, Italy
Daniela Cabiddu, Daniela.Cabiddu@ge.imati.cnr.it , IMATI-GE, CNR, Genova, Italy
Stefano Gagliardo, Stefano.Gagliardo@ge.imati.cnr.it , IMATI-GE, CNR, Genova, Italy
Franca Giannini, Franca.Giannini@ge.imati.cnr.it , IMATI-GE, CNR, Genova, Italy
Marina Monti, Marina.Monti@ge.imati.cnr.it, IMATI-GE, CNR, Genova, Italy

Keywords:
Geometric processing, Web repository, Web services, Workflows

DOI: 10.14733/cadconfP.2015.303-307

Introduction:
Nowadays geometric models are ubiquitous, and models which are created in a given context often
need to be reused in different scenarios. In these cases, a pre-processing is typically necessary to
adapt the model to the new requirements (e.g. format conversion, geometric/topological
modifications). As an example, performing the finite element analysis during a product design
requires the creation of a mesh model from the CAD B-rep and also model adjustments and shape
simplification involving both topological and geometric changes. The triangles produced by a
tessellation algorithm are usually perfect for a visualization setting but not appropriate for a FEA
application, where regularity of the mesh and its density in regions affected by particular stress are
determinant to guarantee faithful simulation results. These processing are generally performed
according to steady sequences resulting from technological constraints and experience. As a
consequence, it is often difficult for non-experts to understand which tools and operations better fit
with the specific purposes. In this case, a remeshing process is necessary to modify the shape of the
triangles without modifying the overall shape of the model. Before remeshing, however, possible pre-
processing might be necessary to guarantee that the mesh actually encloses a solid.

Another example in which shape model adaptation is necessary is the use of CAD models in VR
environments. Even if VR offers advantages and new usage possibilities, it is mainly adopted in large
companies, such as automotive and aerospace industry. A larger adoption of VR tools in wider
engineering applications, and in particular in smaller companies, is still quite limited due to various
reasons that include the time and skill required to properly adapt CAD models to be effectively used
in VR applications. Some CAD vendors are providing integrated solutions for data acquisition and
integration, but they are strictly coupled with their systems and do not fully automate the process.
Design reviews and simulation in VR environments demands for high visualization capabilities
obtained by processing polygon data, whereas CAD models are based on continuous surfaces.
Moreover, engineering models are not created to be visualized in real time but to provide the effective
detailed product shape to be manufactured or to serve as a schematic representation of the
characteristics to be analyzed [7]. Therefore, CAD models need to be converted in a VR compatible
format, i.e. a polygonal representation. Various problems can be detected in this. As in the previous
examples, there is an inadequate treatment of the geometry with loss of precision leaving to
inconsistent models with wrong surface orientation or cracks. In addition, the obtained models are
too complex with unnecessary details, e.g. hidden areas, but at the same time, they miss realism. In
fact, texture information is rarely associated to the CAD model, but it is quite important for truthful
VR visualization. Finally, semantic information associated to each object, including its structure, is lost

http://www.cad-conference.net/

304

Proceedings of CAD’15, London, UK, June 22-25, 2015, 303-307
© 2015 CAD Solutions, LLC, http://www.cad-conference.net

and frequently needs to be recreated. To overcome these problems, several adjustments have to be
performed by VR specialists using ad hoc tools. Thus, the required knowledge in choosing the most
appropriate tool functionality in the correct sequence may further discourage engineers in adopting
VR in their product development. The Web provides plenty of documentation and tutorials on the use
of the most disparate tools, but they are weakly organized and mostly focused single specific software
tools.

To overcome these limitations, we have developed new functionalities within the Virtual
Visualization Service (VVS) infrastructure for the creation and retrieval of shape processing workflows
[9], [1]. The VVS developed within the VISIONAIR project [8] extends the Digital Shape Workbench
(DSW) created in the AIM@SHAPE Network of Excellence [1]. It consists of ontologies and web-based
repositories of Shape Tools and Workflows, together with an advanced Search Framework [2]. Within
the VVS, two types of workflows are considered: the so-called static workflows, which describe best
practice processing pipelines, and the executable workflows, which allow running sequences of Web
services. An ontology has been defined for their formal description and instances may be created for
the specification of best practices in preparation of CAD data for Virtual Reality environments.

The Workflow Ontology:
The Workflow Ontology (WO) is the knowledge base that allows describing formally both documental
and executable workflows. The ontology is built on top of the Common Info Ontology (CIO) and of the
Common Tool Ontology (CTO), which organize the information about the users and the tool repository
of the VVS (a catalogue of software tools for the creation, analysis and modification of shapes). Fig. 1
gives an overview of the ontology structure; in green the classes of the WO, in yellow and cyan the ones
of the CIO and CTO, respectively. We decided not to use already existing process ontologies because of
their complexity greater than the one needed for the VISIONAIR purposes, in which the main issue was
to assist users in the preparation of data for the transition from one application environment to
another, considering the starting and final data format and/or the software tools.

The main class of the WO is the Workflow class, where workflows are indeed instantiated. In
particular, two subclasses have been defined, WorkflowStatic and WorkflowExecutable, for the
instantiation of documental workflows for best practices (that are static), and executable workflows,
respectively. Static workflows are meant as sequences of at least two activities that are elements of the
Activity class. Simple activities correspond to a single functionality and can be grouped in macro-
activities when they contribute to a unique logical action, which is normally performed by using the
same software system. They are elements of the SimpleActivity and MacroActivity classes,
respectively, both subclasses of the Activity class. The WorkflowDomain class is defined to specify for
each element of the Workflow class the purpose of the workflow and its context of use. Other
important classes are used to indicate tips and constraints or additional data required to carry out the
specific activity. Additionally, the URL of documentation files may be linked to an activity or to one of
its tips or restrictions for providing more detailed information. As the tools defined in the Tool
Repository are mainly meant to be shape-oriented, the creation of new tools more devoted to specific
application domain (such as tools managing sounds for VR) is allowed as instances of the Tool class of
the WO.

The formalization of executable workflows is at a preliminary stage and includes, in addition to the
common properties, the link to the .xml file that describes the workflow and is used by the engine
described in the last section for the execution of the workflow itself.

The Workflow Repository:

The WO is the knowledge base of the Workflow Repository, a web platform where users can upload,
remove, search and browse workflows. To facilitate the upload of new workflows, a dedicated user-
friendly interface has been developed, which supports the creation of the instances of the required
ontology classes or of the web service sequence for the executable workflow. It is a step-by-step
uploading procedure that guides the user through the creation of a workflow without the need to
know how the metadata he/she is inserting are stored in the underlying ontology. In the case of static
workflows, it is possible to reuse existing elements by choosing them from dropdown lists; a “View”
button is provided to visualize the metadata of the selected instance in order to verify if the

http://www.cad-conference.net/

305

Proceedings of CAD’15, London, UK, June 22-25, 2015, 303-307
© 2015 CAD Solutions, LLC, http://www.cad-conference.net

considered element is suitable to the user needs. No limit to the number of activities and sub-activities
composing a workflow is given. When the user creates a new activity, he/she is prompted to insert the
activity metadata, which include name, description, corresponding functionality, additional inputs,
preserved data, tips and restrictions; specific tools for which they apply may be associated, as well as
documental files may be uploaded. The browsing interface allows the user seeing all the workflows
stored in the repository. The browsing is based on the metadata stored in the ontology. \

Fig.1: The Workflow Ontology Structure.

For static workflows, it allows visualizing not only the complete ones, but also those sub-parts that are
made up by at least two activities or even those activities with more than one sub-activity. Complete
and non-complete workflows are shown in different colors and it is possible in any case to filter the
workflows in such a way that only the complete ones are shown. Moreover, the user can choose to
filter the workflows using different searching criteria: such as by domain/purpose, or by input/output
tools or formats. By clicking on a workflow, the user can access a new tab, which provides a more
detailed view on it, where a tree representation of the workflow is given together with the main
information about it. By clicking on the box representing one of its activities, the user may also get all
the information on the activity itself, from the tools stored in the VVS Tool repository performing it, to
its inputs/outputs and the tips and restrictions (Fig. 2).

Executable Workflows:

The Executable Workflow Module is designed to support geometry processing research activities. Since
running experiments is one of the main tasks in this field and a typical experiment consists of
performing a sequence of operations on a starting model and analyzing the results, our framework
allows running state-of-the-art algorithms by using only a standard Web browser, without struggling
with software installations, compatibility issues, or hardware requirements. Algorithms may be
exploited individually or combined in complex geometry processing workflows. Furthermore,
researchers in other fields than geometry processing who need to exploit geometry algorithms to run
their experiments can easily take advantage of our system since no expertise in programming and
geometry modelling is required.

The framework architecture is organized in three layers. On one side, a Web-based user interface
allows choosing the desired algorithm among the available ones or defining complex geometry
processing pipelines by combining a set of available operations. On the other side, a set of Web
services is available. Web services may be considered as black boxes, each of them able to run a
specific geometry processing algorithm on an input model using possible input parameters and
returning the generated output address. The Workflow Engine is the interface between the two sides
and is responsible of the pipeline runtime execution. It receives the specification of a geometry
processing workflow, which can be either a new one or the identifier of one of the previously defined
pipelines, and the address of an input mesh. When all the data is available, the Engine sequentially

http://www.cad-conference.net/

306

Proceedings of CAD’15, London, UK, June 22-25, 2015, 303-307
© 2015 CAD Solutions, LLC, http://www.cad-conference.net

invokes the various Web services, manages the flow of data among them and returns the address of
the eventual result to the user interface.

The Workflow Engine also supports the execution of workflows that include conditional tasks and
loops by delegating the evaluation of the condition to specific Web services able to evaluate mesh
qualities. These conditional services receive from the Workflow Engine the address of the input mesh,
evaluate a specific mesh quality and return a Boolean value to indicate if the condition is satisfied. The
Engine is responsible to select the workflow operations that should be executed after the condition
evaluation, according to the obtained result. The aforementioned protocol allows to remotely run
geometry processing algorithms on 3D models, but the transfer of large-size meshes may constitute a
bottleneck in the workflow execution. In order to avoid this situation, we designed an optimized mesh
transfer protocol, based on the observation that many algorithms simply apply local modifications to
the input. Our optimized protocol supports the processing of large meshes by sensibly reducing the
overall elaboration time.

Geometric Pipelines Implementable as Executable Workflows:
The following examples illustrate geometric pipelines that can be realized as executable workflows.

Mesh repairing for 3D printing

Today fabricating an appropriate 3D model using a low-cost 3D printer is as easy as printing a textual
document, but creating a 3D model, which is actually “appropriate” for printing, is definitely
complicated. A 3D model can be produced either from scratch by using traditional CAD software, or
from real-world objects using 3D digitizers. In both cases, the raw model is likely to have a number of
defects and flaws that make it unsuitable for printing [3].

Fig. 2: Visualization of a static workflow in the Workflow Repository.

http://www.cad-conference.net/

307

Proceedings of CAD’15, London, UK, June 22-25, 2015, 303-307
© 2015 CAD Solutions, LLC, http://www.cad-conference.net

Proper pipelines of geometric algorithms to repair raw digitized models have been defined in the
literature [4] and can be implemented as executable workflows. Similarly, but using different
sequences of basic algorithms, meshes produced by tessellation of assembled CAD models can be
automatically fixed to make them printable [5]. In most cases the repairing process can take place in a
completely automatic manner, that is, without user intervention. However, some workflows may need
to iterate the execution of one or more basic algorithms to converge to an eventual clean result. Thus,
to make these pipelines available as executable workflows, the system must provide support for loops
and conditional tasks.

Mesh improvement for visualization

When a mesh model must be visualized it is often important to convey a clear unbiased picture of the
object. This requirement is in contrast with the characteristics of typical raw models coming from 3D
digitization sessions, where a number of surface holes are commonplace just as surface noise, tiny
disconnected components, gaps, and so on. Mesh visualization is not as demanding as 3D printing, but
all the aforementioned defects should be removed or reduced to produce a nice and informative
rendering. Geometric pipelines including surface smoothing, hole filling, gap closing and possibly
simplification are therefore necessary [6]. Executable workflows can be implemented in this case too,
and a number of variations can be provided depending on the target visualization device (e.g. a
powerful graphics workstation, a desktop PC, a smartphone). For example, the level of the possible
simplification can depend on the rendering capabilities, whereas the amount of smoothing can depend
on the specific rendering engine used.

Acknowledgements:
This work has been partially supported by the European Commission under grant agreement 262044
VISIONAIR and by the PO CRO Fondo Sociale Europeo Regione Liguria 2007-2013 Asse IV “Capitale
Umano” Ob. Specifico I/6, project “Tecniche di visualizzazione avanzata di immagini e dati 3D in
ambito biomedicale”. The authors want to thank the VISIONAIR partners participating to JRA 9 and, in
particular, Stefano Mottura, Christian Weidig, Lionel Roucoules and Walter Terkaj.
Additional thanks to Marios Pitikakis for the technical support and to Prof. Bianca Falcidieno and all
the participants to the AIM@SHAPE NoE for making possible the initial version of the DSW.

References:
[1] AIM@SHAPE , FP6 IST NoE 506766, http://www.aimatshape.net
[2] Attene M.; Giannini F.; Pitikakis M.; Spagnuolo M.: The VISIONAIR Infrastructure Capabilities to

Support Research, Computer-Aided Design and Applications, 10(5), 851 - 862, 2013.
http://dx.doi.org/10.3722/cadaps.2013.851-862

[3] Attene M.; Campen M.; Kobbelt L.: Polygon mesh repairing: an application perspective. ACM
Computing Surveys, 45(2), Art. 15 (33 pages), 2013. http://dx.doi.org/10.1145/2431211.2431214

[4] Attene M.: A lightweight approach to repairing digitized polygon meshes. The Visual Computer,
26(11), 1393-1406, 2010. http://dx.doi.org/10.1007/s00371-010-0416-3

[5] Attene M.: Direct repair of self-intersecting meshes. Graphical Models, 76, 658-668, 2014.
http://dx.doi.org/10.1016/j.gmod.2014.09.002

[6] Cabiddu D.; Attene M.: Distributed Triangle Mesh Processing In Procs. of 22nd International
Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2014
(WSCG), Plzen (CZ), 2-5 June 2014

[7] Raposo, A.; Corseuil, E. T. L.; Wagner, G. N.; dos Santos, I. H. F.; Gattass, M.: Towards the use of
cad models in VR applications. In Proceedings of the 2006 ACM international conference on
Virtual reality continuum and its applications (VRCIA '06). ACM, New York, NY, USA, 67-74.
http://dx.doi.org/10.1145/1128923.1128935

[8] VISIONAIR: VISION Advanced Infrastructure for Research, http://www.infra-visionair.eu/
[9] VVS - http://visionair.ge.imati.cnr.it/

http://www.cad-conference.net/
http://www.aimatshape.net/
javascript:AutoWindowOpen(%22/metaopac/servlet/Isis?Conf=/export/home/metaopac/mpisa/cnrpConf/cnr_imatige-pub-list.sys.file_x&Obj=@cnr-pSh.pft&Opt=get&Type=Doc&Id=038206%22,%22Doc%22);
javascript:AutoWindowOpen(%22/metaopac/servlet/Isis?Conf=/export/home/metaopac/mpisa/cnrpConf/cnr_imatige-pub-list.sys.file_x&Obj=@cnr-pSh.pft&Opt=get&Type=Doc&Id=038206%22,%22Doc%22);
http://dx.doi.org/10.3722/cadaps.2013.851-862
http://dx.doi.org/10.1145/2431211.2431214
http://dx.doi.org/10.1007/s00371-010-0416-3
http://dx.doi.org/10.1016/j.gmod.2014.09.002
http://dx.doi.org/10.1145/1128923.1128935
http://www.infra-visionair.eu/
http://visionair.ge.imati.cnr.it/

