
285

Proceedings of CAD’15, London, UK, June 22-25, 2015, 285-288
© 2015 CAD Solutions, LLC, http://www.cad-conference.net

Title:
IFOG: Inductive Functional Programming for Geometric Processing

Authors:
Masaji Tanaka, tanaka@mech.ous.ac.jp, Okayama University of Science
Yuki Takamiya, takamiya@mech.ous.ac.jp, Okayama University of Science
Naoki Tsubota, tsubota@mech.ous.ac.jp, Okayama University of Science
Kenzo Iwama, whatisiwama@yahoo.co.jp, EngiCom Corporation

Keywords:
IFOG, Inductive Programming, Functional Programming, Geometric Processing, Property, Combinatorial
Search

DOI: 10.14733/cadconfP.2015.285-288

Introduction:
Since decades, especially in CAD and CG, to solve various kinds of problems and/or to develop
automatic systems, not only geometric modeling techniques but also combinatorial searches of
geometric elements such as line segments have been applied extensively. For example, to develop the
automatic system that converts 2D drawings into 3D models, a great many automatic recognitions of
complex geometric elements such as primitives and features are required for their programming.
Generally, it is troublesome and time consuming to program the combinatorial searches for
programmers because of the following reason. Firstly, they are basically algorithmic. Also, their
formalization would be difficult because there are few mathematical bases in them. If a programmer
wants to detect each parallelogram from a 2D drawing drawn in a 2D CAD, firstly he/she might search
four straight lines, and then calculate their relationships. As the result, his/her programs for the
detection would consist of too many procedures by using conventional programming techniques. On
the other hand, in object-oriented programming (OOP), various kinds of classes can be defined, and
programs almost consist of passing messages among objects as instances of the classes, e.g. [1]. So the
class of straight lines can be made in the programming. However, though this class can be defined in
detail, too many passing messages among straight lines would be required for the programming of
this problem. In this paper, a new programming technique called IFOG (Inductive Functional
prOgramming for Geometric processing) is proposed. IFOG enables to realize easier programing for
programmers, especially for beginners, than conventional programming techniques for geometric
processing such as this problem.

Main Idea:
Suppose that a little child has already known how to draw a straight line in a paper by using a pen. A
teacher could teach him/her which line is longer than another line inductively by indicating plural
examples of two straight lines drawn in papers. Generally, how to measure the length of a straight line
and its real value are knowledge for humans. Also, the value is a property of the line. Continuously,
when he/she learns about advanced geometry, the relationships among straight lines and the
properties of them would be understood as knowledge step by step. The philosophical basis of IFOG is
this learning process. In IFOG, the knowledge is expressed as program functions and the properties of
geometric elements such as straight lines.

We have developed IFOG system that could be a semi-automatic programming framework for
geometric processing. In the system, each of the functions could be automatically generalized
inductively from plural examples as instances that are input by user(s). Also, the properties of each
geometric element could be automatically generated from the functions step by step and generalized

http://www.cadconferences.com/

286

Proceedings of CAD’15, London, UK, June 22-25, 2015, 285-288
© 2015 CAD Solutions, LLC, http://www.cad-conference.net

as a class inductively. Suppose users make a great many functions and properties of geometric
elements in the system. When these functions and properties are applied to a drawing, it would
become an intelligent drawing. If a user wants to make a program that requires complex combinatorial
searches of geometric elements in the drawing, his/her programming in the system would become
easier and simpler than conventional programming. In the past, the authors attempted to program
various kinds of combinatorial searches to restore partial omissions of 2D mechanical drawings by
using properties of geometric elements, e.g. [4-5]. However, it was difficult to formalize a great many
properties of geometric elements. IFOG would solve this issue by generating the properties inductively.

An example of programming in IFOG system is indicated as follows. Fig. 1 illustrates Example 1
that is a line drawing imaging a sketch of a cuboid. Example 1 is drawn in a 2D CAD and consists of
seven points (P1, P2, .. , P7) and nine lines (L1, L2, .. , L9). In the system, initially the class of lines is filed
as Class_Line.txt as in the left side of Fig. 2. In the class, two properties are defined as a number and
terminals. Here, “di” (i=1,2,3) means default. When Example 1 is input to the system, firstly nine
instances of lines are automatically made from the class and they are filed as Line.txt as in the right
side of Fig. 2. Here, suppose a user wants to make a function to get length of a line. This function is
named Get_length_of_line(). The left side of Fig. 3 illustrates the procedures to get length of L1. They
are written by the user. Also, he/she can write the procedures to get length of L9 as in the right side of
Fig. 3. When these two procedures in Fig. 3 are compared, it is found that each of two different
numbers can be changed into a variable. For example, ‘L1’ and ‘L9’ can be expressed as ‘Lv1’ where ‘v1’
is a variable. In the same way, eight variables (v1, v2, … v8) can be made as in Fig. 4. This figure
expresses the function Get_length_of_line(). Here, the two procedures can be two instances of the
function, and their generalization is automatically processed in the system. This generalization
technique is based on [2-3]. In this function, Memo_Line_property(Lv1, Length, v8) is a sub-function to
add property ‘Length’ to the properties of Lv1. So, “Length: 51” and “Length: 36” are added to the
properties of L1 and L9 respectively as in the left side of Fig. 5. Moreover, “Length: d4” is automatically
added to the class of lines in the system as in the middle of Fig. 5, and then each length of the other
lines is automatically added to Line.txt as in the right side of Fig. 5 in the system.

In IFOG system, classes and their instances are stored as text files in a PC. Generally in OOP, the
definition of classes is strictly formalized and it is difficult to change the contents of them because
instances are made from their classes. On the contrary, in IFOG system, reading and writing of the
properties of classes and their instances is easy and flexible for programmers because classes can be
made from instances inductively and they are stored as text files.

In IFOG system, the detection of a parallelogram in Example 1 could be formalized as a function as
follows. Suppose ‘Connecting line numbers at Pd’ is added as two properties of the class of lines. Also,
‘Parallel line numbers’ is added as a property of the class of lines. For example, the properties of L1
can be expressed as follows. { No.: L1; Terminal No.: P1, P2; Length: 51; Connecting line No. at P1: L4;
Connecting line No. at P2: L2, L3; Parallel line No.: L5, L7; }. An instance of the function named
Get_parallelogram() can be described as follows.

Get_parallelogram()

Procedure:

(L1, L5) = Get_two_lines_whose_lengths_are_the_same(); yes = Two_lines_are_parallel(L1, L5);

(L3, L4) = Get_line_whose_terminals_are_in(L1, L5);

yes = Lengths_of_two_lines_are_the_same(L3, L4); yes = Two_lines_are_parallel(L3, L4);

return (L1, L5, L3, L4);

This instance consists of four sub-functions. Each of their programming could be simple and easy by
using properties of lines. In addition, the class of parallelograms would be made in the instance.
Furthermore, the detection of a sketch of a cuboid in Example 1 could be formalized easily as a
function in IFOG system.

Conclusions:
In this paper, a new programming technique called IFOG and its system are proposed. In IFOG system,
functions and the properties of geometric elements are automatically generalized from instances that

http://www.cadconferences.com/

287

Proceedings of CAD’15, London, UK, June 22-25, 2015, 285-288
© 2015 CAD Solutions, LLC, http://www.cad-conference.net

are user input. As the result, IFOG could realize easier programming for geometric processing than
conventional programming techniques such as OOP. An example of programming in IFOG system is
indicated by using Example 1. When more curved lines and 3D geometric elements are handled in IFOG
system, the text files expressing their properties would become large rapidly and inductively. It is an
important issue for our IFOG system. However, basically reading and writing of the files are
automatically executed by computers. Therefore, although it is important to make robuster format of
the files, we estimate that the increase of the amount of information of the files does not become a
serious problem.

References:
[1] Budd, T.: A Little Smalltalk, Addison-Wesley Publishing, 1987.
[2] Fujiwara, M.; Iwama, K.: A program that acquires how to execute sentences, WSEAS Transactions

on Computers, 8(8), 2009, 1348-1357.
[3] Iwama, K.: A robotic program that acquires concepts and begins introspection, NueroQuantology,

4(4), 2006, 321-328.
[4] Tanaka, M.; Kaneeda, T.; Yamahira, T.; Iwama, K.: A Method to Restore Partial Omissions in 2D

Drawings, Computer-Aided Design & Applications, 3(1-4), 2006, 341-347.
http://dx.doi.org/10.1080/16864360.2006.10738472

[5] Tanaka, M.; Kaneeda, T.; Sasae, D.; Fukagawa, J.; Yokoi, R.: The Learning System to Restore
Operations of Isolated Line Segments in 2D Drawings, Computer-Aided Design & Applications,
5(1-4), 2008, 354-362. http://dx.doi.org/10.3722/cadaps.2008.354-362

P1

P2

P3

P4

P5

P6

P7

L1

L2
L3

L4

L5

L6

L7

L8
L9

xO

y

Fig. 1: Example 1.

Get_length_of_line(L1)
procedure:
(P1, P2) = Get_terminal_numbers_of(L1);
(40, 80) = Get_position_of(P1);
(90, 70) = Get_position_of(P2);

51 = ((40-90)^2 + (80-70)^2)^0.5;
Memo_Line_property(L1, Length, 51);
return 51;

Get_length_of_line(L9)
procedure:
(P3, P5) = Get_terminal_numbers_of(L9);
(90, 40) = Get_position_of(P3);
(70, 10) = Get_position_of(P5);
36 = ((90-70)^2 + (40-10)^2)^0.5;

Memo_Line_property(L9, Length, 36);
return 36;

No.: L1;

Terminals: P1, P2;

No.: L2;

Terminals: P2, P3;

................

No.: L9;

Terminals: P3, P5;

No.: Ld1;

Terminals: Pd2, Pd3;

Fig. 2: Initial Class_Line.txt and Line.txt. Fig. 3: Two procedures to get length of a line.

http://www.cadconferences.com/
http://dx.doi.org/10.1080/16864360.2006.10738472
http://dx.doi.org/10.3722/cadaps.2008.354-362

288

Proceedings of CAD’15, London, UK, June 22-25, 2015, 285-288
© 2015 CAD Solutions, LLC, http://www.cad-conference.net

Get_length_of_line(Lv1)
procedure:
(Pv2, Pv3) = Get_terminal_numbers_of(Lv1);
(v4, v5) = Get_position_of(Pv2);
(v6, v7) = Get_position_of(Pv3);
v8 = ((v4-v6)^2 + (v5-v7)^2)^0.5;

Memo_Line_property(Lv1, Length, v8);
return v8;

No.: Ld1;

Terminal No.: Pd2, Pd3;

Length: d4;

No.: L1;

Terminals: P1, P2;

Length: 51;

No.: L2;

Terminals: P2, P3;

................

No.: L8;

Terminals: P3, P5;

No.: L9;

Terminals: P3, P5;

Length: 36;

No.: L1;

Terminals: P1, P2;

Length: 51;

No.: L2;

Terminals: P2, P3;

Length: 30;

................

No.: L8;

Terminals: P3, P5;

Length: 30;

No.: L9;

Terminals: P3, P5;

Length: 36;

Fig. 4: The Generalization of Fig. 3 Fig. 5: Update of Class_line.txt and Line.txt.

into a function.

http://www.cadconferences.com/

