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Introduction: 

The idea behind Knowledge Based Engineering (KBE) is to capture the generic knowledge of the 
product family and their design process; embed within KBE applications (also known as “application 
code”) which will be used in the development of similar products. This application code is often tightly 
coupled with commercial CAD software such as CATIA V5. The knowledge embedded in this 
application code is often not understood by designers and domain experts and hence its reuse is 
limited. The design requirements of the product are often masked inside the code resulting in lack of 
traceability between requirements and application code. When a requirement changes, the application 
code may have to be changed manually by an expert. Additionally, the current KBE systems rely 
heavily on the commercial CAD software for which it has been developed. 

To address these issues, the underlying product and process knowledge should be represented in 
a CAD software-independent form and this generic model translated into application code for targeted 
CAD software. There have been several knowledge engineering research activities in academia and 
industry to represent product and its design process knowledge such as CommonKADS, Design 
Knowledge Acquisition and Redesign Environment (DEKLARE), and Methodologies and tools Oriented 
to Knowledge based engineering Applications (MOKA). But these methodologies do not readily offer a 
means to translate the product and process knowledge to software code. In our research, we propose a 
methodology to translate a MOKA knowledge model into software code. 

Main Idea: 

In this paper, an approach to translate MOKA based knowledge model into software model and a 
generic application skeleton code is presented. Various elements of knowledge model are mapped to 
respective elements of software model / typical application code structure so that the generic 
application code can be re-generated in a consistent way from knowledge model. This helps to 
distinguish knowledge from application code and at the same time ensures traceability between 
knowledge model and the application code. 

As per the MOKA methodology, the first step is to create the Informal Knowledge Model.  This 
involves structuring the knowledge into five categories – Entities, Constraints, Rules, Activities and 
Illustrations. Entities represent the break-down of the product. Constraints capture design boundaries. 
Activities represent design processes. Rules capture design calculations. Apart from these, 
relationships between these knowledge objects are identified and represented in the form of diagrams. 
Once the Informal Knowledge Model has been created, Formal Knowledge Model is built. It is created 
by extending the Informal Knowledge model and it comprises of Product Knowledge Model and Design 
Process Model. Product Knowledge Model represents various views of the product (such as structure, 
representation, technology, function, and behavior) and Process Knowledge Model represents the 
design process. This completes the definition of the product and design process.  The focus of this 
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paper is to translate this product and design process model into a software model which can then be 
implemented as KBE application in specific software platforms. 

There have been several attempts made earlier, as reported by Emberey et. al, [1], Skarka et. al. [4] 
and Lohith et. al. [2] to create CAD model/design in CATIA V5 by referring to MOKA based knowledge 
models. Emberey et. al, [1] creates Informal Knowledge Model to capture design process knowledge 
and uses this for creating design application. Use of MOKA knowledge model is mostly driven from 
the perspective of knowledge capture and representation.  Skarka et. al. [4] describes the way the 
Informal Knowledge Model has been used for building the generative model in CATIA V5 Knowledge-
ware. Lohith et. al. [2] describes the way to create generic CAD models using CATIA V5 Knowledge-
ware from Formal knowledge model in a traceable manner. Our focus in this paper is more on creating 
software model and generic KBE application code structure that covers both CAD as well as non-CAD 
applications. 

In order to realize this knowledge in a software code, a software model layer has to be created. 
Various elements of the knowledge model are mapped to respective elements of software model / 
typical application code structure so that the generic application code can be re-generated in a 
consistent way from knowledge model. This helps to distinguish knowledge from application code and 
at the same time ensures traceability between knowledge model and the application code. 

Some rules to translate knowledge model into generic application skeleton code are proposed. 
Entities are mapped to classes and class objects. Activities are mapped to member functions of 
classes. Constraints are mapped to global constants. Rules are mapped to global functions. The 
attributes of Entities (Product, Assembly, Part, and Feature etc.) are translated as attributes of relevant 
class and class objects. In addition to these elements (such as classes and methods captured from the 
knowledge model), there could be additional implementation-specific classes. For example, a solid 
model may be realized in CAD software through classes specific to that CAD software which would 
create geometric profiles and extrusions. These classes may be represented only in the software model 
and not in the knowledge model. However, these will not be discussed in the current approach. 

Once the software model has been formulated, the software model elements (such as classes, 
constants, methods etc.) can be mapped to the appropriate code syntax of the targeted platform (such 
as VB .NET).  In complex systems, within the software model itself, one can demarcate a pure software 
model which is programming language-independent and a layer which is specific to the targeted 
implementation language. When the targeted programming language or CAD software changes, only 
this adapter which connects the software model with the language / CAD platform needs to be 
changed. Additionally, in this system, any change in the upstream (such as requirements or product 
specifications) gets percolated down to the application code and they are traceable. 

A typical example, “Design of Plate Assembly” is used to demonstrate the translation of Formal 
Model to KBE application. Figure 1 gives the picture of a plate assembly comprising of two plates 
connected together through multiple fasteners. Depending upon the load (F) that the plate assembly is 
supposed to carry, the fasteners (diameter and length) have to be designed. Figure 2 shows the UI of 
the tool highlighting the input and output expected from the tool. As the intent was only to illustrate 
the methodology, it is considered only a part of the plate assembly design i.e. only the fastener design 
of plate assembly. The knowledge of the design of this plate assembly is captured and represented in 
the form of MOKA Informal and Formal knowledge models. The knowledge models have been created 
in PCPACK, a knowledge modeling tool. In this illustration, we have demonstrated the translation of 
Formal Knowledge models to KBE application code with the traceability of various aspects of 
knowledge model. 

 

Plate Assembly consists of plates joined through fasteners. Fastener assembly comprises of bolt, nut 
and washer.  Various constraints, rules and design activities have been identified and represented as 
informal knowledge model. The entire model comprises of 3 entities, 18 activities, 11 rules and 9 
constraints.  Formal model has been created from the Informal model identifying various structural, 
functional, behavioral and representational entities. Also, design process model was created 
comprising of design activities, related rules and also linking to relevant structural entities. Since the 
focus of this paper is only translation of the Formal knowledge model to application code, all the 
details of the plate assembly knowledge model is not presented. 
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   Fig. 1: Plate assembly example.                         Fig. 2: Plate assembly example UI. 
 

The following illustrates the translation of the Informal and Formal models into software code. 

 

 
Fig. 3: Translation of product model – structure to class/object definitions. 

 
Fig. 4: Translation of product model constraints into global constants. 
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Fig. 5: Translation of design process model rules into global functions. 
 

 
 
Fig. 6: Translation of design process model activities into methods. 
 

 
 
Fig. 7: Translation of design process model – connecting methods and rule functions. 
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Fig. 8: Translation of design process model – methods to classes. 

Conclusions: 

In this paper, we proposed a methodology to translate MOKA based knowledge model into a software 
model and generic application code structure. The proposed methodology provided one-to-one 
mapping between requirements and application code thereby ensuring traceability between them. The 
methodology has been illustrated with an example of design of a bolted plate assembly model. 
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