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Introduction: 
This paper is about the theory and implementation of the solid sweep as a primitive solid modeling 
operation.  A special case of this, viz., blends is already an important operation and prospective uses 
for the sweep are in NC-machining verification [4], collision detection, assembly planning [1] and in 
packaging [7].  
 The solid sweep is the envelope surface of the swept volume generated by a given solid  
moving along a one-parameter family  of rigid motions in . We use the industry standard brep 
format to input the solid  and to output the envelope . The brep of course has the topological data 
of vertices, edges and co-edges, loops bounding the faces and orientation of these, and the underlying 
geometric data of the surfaces and curves.  As we show, the brep of , while intimately connected to 
that of , has several intricate issues of orientation and parametrization.  

 Much of the mathematics of self-intersection, of passing body-check and of overall geometry 
have been described in the companion paper [5].  This paper uncovers the topological aspects of the 
solid sweep and its construction as a solid model. Here, we restrict ourselves to the simple generic 
case, i.e., smooth  and, therefore smooth  which is free from self-intersections, to illustrate our 
approach and its implementation. The general case is also implemented and a few sample sweeps 
appear in Fig. 1.  

 

Fig. 1: Three examples of solid sweeps. 

 
Background: 
The solid sweep has been extensively studied [1,2,4,6,8]. Some of the prominent approaches are based 
on sweep envelope differential equation [4], Jacobian rank deficiency condition [2] and a point 
membership test using the inverse trajectory [6]. For a more comprehensive survey of the previous 
work, we refer the reader to [1]. Much of the work has focused on the mathematics of the surface. The 
exact topological structure has not been investigated in any significant detail.  
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Main contribution: 
Our main contributions are (i) a clear topological description of the sweep, and (ii) an architectural 
framework for its construction.  This, coupled with [5], which constructs the 
geometry/parametrizations of the surfaces, was used to build a pilot implementation of the solid 
sweep using the popular ACIS solid modeling kernel [3].  We give several illustrative examples 
produced by our implementation to demonstrate the effectiveness of our algorithm.  To the best of 
our knowledge, this is the first attempt to explicate the complete brep structure of . 

Central Idea: 
The central idea is to resolve the face adjacency and orientation linkage between the solid boundary 

 and the envelope  through the natural correspondence  which associates to a point  on 
 the point  on  whose 'translate' generated . The map  is illustrated in Fig. 1 and Fig. 2 

using colour-coding, i.e., the face  of  and the faces of generated by  are shown in same colour.  
 
 
 
 
 
 
 
  

 
Fig. 2: The envelope of a saucer being swept along a helical trajectory with compounded rotation. 

 
We show that the adjacency relations between vertices, (co-)edges and faces of  mimic those of . 
For instance if  and  are faces of  with corresponding faces  and  of  and further, if  and  
are adjacent via an edge , then  and  are adjacent via an edge  which corresponds to  (see Fig. 2). 
Similarly, if two co-edges of  intersect in a vertex then the corresponding co-edges of  necessarily 
intersect in the corresponding vertex. This allows for a guided computation of the 'unoriented' 
topological 2-skeleton (vertices, edges, faces and their adjacencies) of , locally lifting the 2-skeleton of 

. 
 It turns out that, in general, the map  is fairly intricate since it can be both orientation 
preserving and reversing at different points. For instance, in Fig. 2, vertices labeled  and  in  
correspond to  and  in . The map  is orientation reversing at  while it is orientation preserving 
at , as can be seen by the color of the adjacent faces. Our main theorem provides a complete 
characterization of the regions on  where  is orientation preserving and reversing respectively, 
thereby, enabling us to lift orientations of faces and co-edges of  to those of corresponding faces 
and co-edges of  respectively. This completes the construction of the oriented topological 2-skeleton 
of . 
 For a face  of , let  be the subset of parameter space of surface  underlying face  so 
that . Let the closed time interval  be the domain of trajectory .  We refer to the set  as 
the prism.  The envelope condition (related to the Jacobian rank deficiency condition [2]) gives rise to a 
2-dimensional submanifold of the prism, which we refer to as the funnel (see [5]). The funnel serves as 
a parametrization space for the faces of  corresponding to .  Further, the intersection of the funnel 
with the boundary of the prism serves as a parametrization space for the co-edges of  which bound 
faces corresponding to . 
 Our algorithm is based on the following architectural framework. Before any geometric entity 
of  is computed, its boundary is computed and oriented.  First, we compute the 0-skeleton, i.e., the 
vertices of . This is followed by computation of 1-skeleton, i.e. oriented co-edges and loops which will 
bound faces of .  Finally, the faces are oriented and parametrized as described above to produce the 
complete Brep of . 
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Conclusion: 
We explicate the complete Brep of the solid sweep as a primitive solid modeling operation. Further, we 
provide a novel algorithmic framework for its computation. We give several illustrative examples 
generated by a pilot implementation of our algorithm to demonstrate the efficiency of our method.

References: 
[1] Abdel-Malek, K.; Blackmore, D.; Joy, K.: Swept Volumes: Foundations, Perspectives and 

Applications, International Journal of Shape Modeling, 12(1), 2006, 87-127. 
http://dx.doi.org/10.1142/S0218654306000858 

[2]    Abdel-Malek, K.; Yeh, H.J.: Geometric representation of the swept volume using Jacobian rank-
deficiency conditions, Computer-Aided Design, 29(6), 1997, 457-468. 
http://dx.doi.org/10.1016/S0010-4485(96)00097-8 

[3]    ACIS 3D Modeler, SPATIAL, http://www.spatial.com/products/3d_acis_modeling 
[4] Blackmore, D.; Leu, M.C.; Wang, L.: Sweep-envelope differential equation algorithm and its       

application to NC machining verification, Computer-Aided Design, 29(9), 1997, 629-637. 
http://dx.doi.org/10.1016/S0010-4485(96)00101-7 

[5]    Bharat, A.; Jinesh, M.; Milin, S.: Local and Global Analysis of Parametric Solid Sweeps, Cornell 
University Library arXiv. 2013. http://arxiv.org/abs/1305.7351 

[6] Huseyin, E.; Ilies, H. T.: Classifying points for sweeping solids, Computer-Aided Design, 40(9), 
2008, 987-998. http://dx.doi.org/10.1016/j.cad.2008.07.005 

[7]    Kinsley Inc. Timing screw for grouping and turning. 
https://www.youtube.com/watch?v=LooYoMM5DEo 

[8]    Peternell, M.; Pottmann, H.; Steiner, T.; Zhao H.: Swept volumes, Computer-Aided Design and 
Applications, 2(5), 2005, 599-608. http://dx.doi.org/10.1080/16864360.2005.10738324 

http://www.cadconferences.com/
http://dx.doi.org/10.1142/S0218654306000858
http://dx.doi.org/10.1016/S0010-4485%2896%2900097-8
http://www.spatial.com/products/3d_acis_modeling
http://dx.doi.org/10.1016/S0010-4485%2896%2900101-7
http://arxiv.org/abs/1305.7351
http://dx.doi.org/10.1016/j.cad.2008.07.005
https://www.youtube.com/watch?v=LooYoMM5DEo
http://dx.doi.org/10.1080/16864360.2005.10738324

