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Introduction: 
Point clouds, as a 3D data representation, are widely used in visualization, animation, CAD modeling, 
GIS, and autonomous driving due to their high spatial accuracy and detailed geometric 
characterization. Acquired via laser scanning, depth cameras, or stereo vision, point clouds inherently 
suffer from noise caused by environmental interference, sensor limitations, and measurement errors. 
Such noise degrades data quality and negatively impacts downstream tasks like 3D reconstruction and 
robotic navigation, necessitating robust denoising techniques to enhance reliability. 

Traditional denoising methods include bilateral filtering (preserving edges) [1], Moving Least 
Squares (MLS) (surface projection) [2], and Locally Optimal Projection (LOP) (geometry-consistent 
point redistribution) [3]. However, these methods often rely on manual parameter tuning, limiting 
adaptability. Recent advances focus on deep learning for its superior generalization. PCPNet-based 
architectures first eliminate outliers before denoising [4], while auxiliary tasks like normal 
filtering improve feature retention [5]. Reinforcement learning frameworks adaptively select denoising 
strategies using geometric priors [6]. Despite these advances, most learning-based methods still face 
two limitations: (1) Static feature aggregation: Existing attention mechanisms uniformly fuse features 
across all points, potentially propagating noise in high-uncertainty regions. (2) Fixed computational 
granularity: Methods often apply identical denoising operations to all patches, ignoring variations in 
local noise intensity and geometric complexity. In contrast, our work proposes a dynamic denoising 
framework that explicitly addresses these issues by introducing: (1) Hard feature masking to suppress 
noise-contaminated features in a spatially adaptive manner, and (2) Binary-gated fusion to enable 
variable-depth feature integration based on patch-specific conditions. This approach eliminates the 
need for manual parameter tuning while achieving parameter-free adaptation to both noise levels and 
geometric structures. 

Main Idea: 
Overview 

Given a noisy point cloud P̂ , our method first predicts a noise displacement vector. The objective is to 

restore the point cloud P̂ such that it closely approximates the clean point cloud P ，where P  

accurately represents the true 3D geometry of the object while preserving sharp features at the edges. 
The restoration process can be formulated as: 

 P̂ P . 
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We have designed two key modules, the Masked Sampling Module and the Variable-Length Feature 
Fusion Module, to enhance the predictive performance of our network. We present our network 
architecture in Fig. 1. 

 
Network Architecture 
Fig. 1 shows our complete network architecture. Given an input point cloud, for each point, a local 
patch is constructed by selecting its k-nearest neighbors. This local patch is then centralized and 
normalized to ensure consistency across different scales and locations. The input consists of a local 

patch formed by the N nearest neighbors centered at point îp , and the output is the noise 

displacement at point îp , which is used to correct the point ip to lie closer to the true surface. Our 

network is mainly composed of four feature vector for processing by subsequent modules. The Masked 
Sampling Module adaptively masks out outliers with high noise. The Variable-Length Feature Fusion 
Module adaptively determines the number of feature fusion steps based on the information from the 
input patch. The Decoder reduces the high-dimensional features learned by the network into a 3D 

noise displacement vector, which is then used to correct the noisy point îp  to the true surface. 

 

 

 
Fig. 1: Overview of network architecture. 

 

The Encoder module begins by centering the input point cloud patch. It consists of four fully 
connected layers (MLPs) to get a high-dimensional feature representation of 512N , facilitating more 
efficient processing by subsequent deep learning modules. The Decoder module starts with a global 
max-pooling operation on the input feature tensor, generating a global descriptor that captures the 
patch's key structural features. This descriptor is then passed through three fully connected layers to 
produce a 3D noise displacement vector. The denoised coordinate is computed by subtracting the 
predicted displacement from the noisy coordinate p . 

To mitigate the interference caused by high-noise outliers during feature fusion in point cloud 
denoising, we propose a Masked Sampling Module (MSM) to adaptively suppress outlier contamination. 
As illustrated in Fig. 2(b), the module operates as follows: 1. Feature Refinement with Residual MLP. 

Given the input feature embedding N Cf R , where N denotes the number of points 

and C represents feature dimensions, we first refine the features through a residual MLP sub-
network. This architecture, designed to alleviate gradient vanishing issues, generates enhanced 

features N C
pf R , which encapsulate both local geometric patterns and global contextual information. 

2. Attention-Guided Feature Correlation Learning. To quantify inter-point feature dependencies within 

the patch, we introduce an attention-based scoring mechanism. Specifically, pf is processed by an MLP 

layer followed by a sigmoid activation, yielding an adaptive significance score vector 1N
sf R  with 

values in [0,1]. Higher scores indicate stronger relevance to the underlying surface structure, while 
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lower scores correspond to potential outliers. 3. Binary Mask Generation and Hard Masking. A 

threshold  (empirically set to 0.5) is applied to binarize sf , producing a binary mask {0,1}Ntf . The 

mask is then expanded to match the feature dimensions of , enabling element-wise multiplication: 

 masked p tf f f . 

This operation selectively nullifies features from outliers ( 0tf ), effectively decoupling their 

influence during subsequent feature aggregation stages. And the effectiveness of the hard masking 
technique is demonstrated in Fig. 2(a). 

 

                               
 
Fig. 2(a): Masking effect visualization.       Fig. 2(b): Masked sampling module architecture visualization. 
 

To adaptively aggregate multi-scale structural features while dynamically adjusting the depth of 
feature fusion based on local geometric complexity and noise distribution, we propose a Variable-
Length Feature Fusion Module (VLFFM). As depicted in Fig. 3, the module operates through the 

following stages: 1. Feature Preprocessing via Residual MLP. The input feature N Cf R  is first 

processed by a residual MLP sub-network to enhance its adaptability to subsequent operations. This 
step ensures stable gradient propagation while refining both local geometric details and global 
contextual relationships. 2. Multi-Scale Feature Encoding. A max-pooling operation is applied to the 

refined features to generate a condensed global descriptor C
gf R , which encapsulates the dominant 

structural characteristics of the patch. 3. Dynamic Fusion Depth Control. To adaptively determine the 

optimal fusion depth for varying geometric complexities and noise levels, gf  is passed through three 

cascaded MLP layers. The final layer employs a sigmoid activation to produce a 3-dimensional 

vector 3[0,1]s . A threshold (empirically set to 0.5) is applied to binarize s, yielding a ternary 

decision mask 3{0,1}m , where each binary value governs the activation of a corresponding feature 

fusion submodule. 4. Attention-Guided Feature Fusion. Each enabled submodule (indicated by 1im ) 

processes the input features through an MLP and max-pooling layer, followed by an attention 
mechanism that learns adaptive weights for feature aggregation.  
 

 
 

Fig. 3: Variable-length feature fusion module visualization. 
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Loss Function 

The proposed loss function is formulated as a weighted combination of two complementary objectives 
to jointly optimize geometric fidelity and spatial distribution regularity. Specifically, the total 
loss L is defined as: 

 recon regL L L , 

where reconL  enforces point-wise geometric consistency between the denoised coordinates and the 

ground-truth surface through an L2-norm penalty: 

 ‖ ‖2
( )

1

1
ˆmin

N
gt

recon i jj N i
i

L p p
N

, 

where îp  and gt
ip  denoting the denoised and ground-truth coordinates of the i-th point, respectively, 

( )N i  represents the k-nearest neighbors of point i . The regularization term regL  imposes a 

uniformity constraint on the denoised point distribution to mitigate clustering artifacts and preserve 
surface continuity. This is implemented via a repulsion-based metric that penalizes abnormally dense 
regions: 

 ‖ ‖2
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Results 

To rigorously evaluate our method's robustness, we conducted comprehensive comparative 
experiments against three state-of-the-art denoising approaches: POINTCLEANNET [4], PCDNF [5], and 
PathNet [6]. Benchmarking was performed on the synthetic Synth-A dataset originally introduced in 
PathNet [6]. As quantitatively summarized in Tab. 1, our framework establishes new performance 
records across all evaluation metrics, achieving 3.6% lower Chamfer Distance (CD) than the second-
best method. To validate generalization capabilities, we designed controlled experiments under 
varying conditions of noise intensity ( = 0.5%–1.5% of bounding box diagonal) and point cloud density 
(10K–50K points per model). All evaluations adopted the CD metric. The visualization of our results is 
presented in Fig. 4, which demonstrates that our model excels in preserving finer details compared to 
other point cloud models. Specifically, the base of the car does not converge into a single layer, a 
feature that is not achieved by other existing models. Additionally, the gap between the legs of the 
humanoid statue is more accurately represented, closely resembling a realistic triangular shape. 
Furthermore, the details of the camel's ears and the denoising effect in the gap between its front legs 
are notably superior, highlighting the enhanced performance of our approach in capturing intricate 
structural details. 
 

 Synth-A 

10K 20K 50K 
AVE 

0.5% 1% 1.5% 0.5% 1% 1.5% 0.5% 1% 1.5% 

CD 

POINTCLEANNET 29.761 42.887 49.873 17.778 22.895 27.940 7.516 10.206 14.750 24.845 

PCDNF 27.167 39.779 46.904 16.176 21.638 26.319 7.072 9.677 14.495 23.247 

PathNet 27.997 41.171 48.033 16.955 21.933 27.055 7.155 9.876 14.500 23.853 

Ours 25.098 37.865 45.183 15.267 20.949 25.693 6.858 9.499 15.690 22.456 

 
Tab. 1: Quantitative comparison on Synth-A. 
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(a) Input    (b) POINTCLEANNET   (c) PCDNF         (c) PathNet          (d) Ours              (e) Truth 

Fig. 4: Visualization of the results. 

Conclusions: 

This work presents a robust point cloud denoising framework that addresses key limitations of 
existing methods through two novel contributions: the Masked Sampling Module for reduce the 
interference of outliers and the Variable-Length Feature Fusion Module fully leverage the latent 
structural information of neighboring points and it can adaptively determine the fusion depth based 
on the complexity of the point cloud. Extensive experiments on synthetic datasets demonstrate state-
of-the-art performance, with our method outperforming POINTCLEANNET, PCDNF, and PathNet by 
3.6% in Chamfer Distance under varying noise levels (0.5%–1.5%) and point densities (10K–50K points). 
The proposed dynamic depth control mechanism proves particularly effective in preserving fine 
structures under sparse sampling conditions, as validated by visual and quantitative analyses.  
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