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Introduction:
In industrial manufacturing and product development, curve design is crucial because smooth and at-
tractive designs require curves with uniform curvature variation, known as curvature monotonicity. In
Computer-Aided Geometric Design (CAGD), Bézier curves are popular since their shapes can be easily
adjusted by moving control points. However, manually choosing control points to maintain curvature
monotonicity is both inefficient and challenging. This paper proposes a method to detect and visualize
regions where potential control points ensuring curvature monotonicity exist. Although GPU-based visu-
alization is powerful, not all users have access to high-performance GPUs. To overcome this limitation,
the method uses a search grid and an iterative approach to evaluate and verify curvature monotonicity
using the Curvature Monotonicity Evaluation Function (CMEF). This solution helps designers and en-
gineers select appropriate control points more efficiently, leading to smoother curve designs and better
products.

Research background:
Curvature monotonicity, relies on uniform curvature variation to ensure smoothness. The concept of
Monotone Curvature Variation (MCV) was first rigorously defined by [1], who established both necessary
and sufficient conditions for quadratic Bézier curves by adjusting the intermediate control point. Another
study extended to conic segments as rational quadratic Bézier curves [2] and proposed conditions for
achieving MCV in B-spline and planar Bézier curves to preserve desirable curvature while eliminating
unwanted variations [3]. Sufficient geometric conditions have also been introduced by [4] to ensure
monotonic curvature, leading to the construction of various polynomials with monotone curvature in
Bézier curves, with further extensions to 3D class A Bézier curves [5]. More recent research [6], pointed
out that while classical formulas determine curvature variation, evaluating monotonicity in higher-degree
or rational curves requires complexity management, thus proposing a CMEF that uses any function
yielding positive values when curvature increases and negative values when it decreases. Additionally,
the real-time visualization of curvature monotonicity regions using GPUs has demonstrated promising
methods for illustrating these regions, further enhanced by depicting them as intersections of half-spaces
formed by implicit curves [7, 8].
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Curvature Monotonicity Evaluation Function (CMEF) of Cubic Bézier curve:
This research implements the cubic Bézier curve to determine curvature monotonicity. The formulation
of planar cubic Bézier, Z(u) is given by:

Z(u) =

3∑
i=0

Pifi(u), (2.1)

where Pi and fi for i = 0, 1, 2, 3 denote the control points and the basis functions of the cubic Bézier
curve respectively. The curvature monotonicity can be detected through the Curvature Monotonicity
Evaluation Function (CMEF) as proposed by [6, 7, 8]. From Equation (2.1), Z(u) with degree n and
n + 1 control points, the curvature monotonicity can be determined by checking the numerator sign of
dκ
ds . Then, the equation of dκ

ds is denoted by

dκ

ds
=

(Ż×
...
Z )(Ż× Ż)− 3(Ż× Z̈)(Ż ·

...
Z )

|Z|6
, (2.2)

where Ż, Z̈, and
...
Z denotes the first, second and third derivative of Z respectively. Furthermore, by

assuming the denominator of Equation (2.2) is always positive, the numerator of the dκ
ds can be expressed

as Bernstein polynomial basis of degree 4n− 7 for planar curve which represented as λ(u)

λ(u) =

4n−7∑
i=0

B4n−7
i (u)ξi, (2.3)

where ξi are the corresponding coefficient and B4n−7
i (u) is the Bernstein basis. Next, based on the

Theorem 1 and derivation of CMEF, λ(u) from [6], the curvature monotonicity of polynomial planar
curve with degree n(n > 3) can be computed as

Kn = S4(W1 ·W1)− 3S3(W1 ·W2), (2.4)

where

W1 = n(R11 −R10),

W2 = n(n− 1)(R22 − 2R21 +R20),

S3 = n2(n− 1)(R20 ×R21 +R22 ×R20 +R21 ×R22),

S4 = n2(n− 1)(n− 2)((1− u)(R31 −R30)× (2R31 − 3R32 +R33) + u(R30 − 3R31 + 2R32)× (R33 −R32)).
(2.5)

Note that, the ξi values are used to indicate whether the curvature monotonicity is increasing, de-
creasing or not monotonically varying. The indication of ξi values are as follows:

• If all the values of ξi ≥ 0 for i = 0, . . . , 4n− 7, the curve is regarded as monotonically increasing.

• If all the values of ξi ≤ 0 for i = 0, . . . , 4n− 7, the curve is regarded as monotonically decreasing.

• If ξ0 · ξ4n−7 < 0, the curve is regarded as non-monotonically varying.

Curvature Monotonicity Region:
In this section, the detection of the curvature monotonicity region is visualized and discussed. It should be
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noted that a few key components are required to verify the curvature monotonicity: the ξi values obtained
from Equation (2.3), and the curvature profile. The ξi values can be visualized using the CMEF plot.
Additionally, curvature monotonicity is characterized by a curvature profile that displays a consistently
increasing or decreasing trend.

For clarity, the visualization of the curvature monotonicity region is based on two primary colours.
Purple is used to indicate regions where the curvature increases, while green designates regions where
the curvature decreases, with variations in the shades representing subtle differences. Note that, the
curvature monotonicity region is determined for each individual control point. In other words, if control
point is to be relocated to a different region, the adjustment must be performed one control point at
a time. In addition to that, each control point of the curve has its own curvature monotonicity region
and relocating them individually does not guarantee that the overall curvature will remain monotonic
because these regions are based on the original configuration. Hence, once a control point is adjusted,
either the code must be re-run to its initial setup or redo the iterative process is required to update the
latest control points so that it will generate the latest curvature monotonicity region once the curvature
profile does not monotone. Moreover, the search grid range applied for the following discussion is set
from -10 to 10 along both x and y axis.

Furthermore, an example of curvature monotonic increasing profile is shown in Figure 1, where the
Bézier curve exhibits a monotone increasing curvature profile as can be seen in Figure 1b. This observation
further confirmed by Figure 1c, in which the plot is entirely contained within the positive quadrant.
Figure 1d illustrates the region of the curvature monotonic increasing for each control point, while a
curvature monotonic decreasing region is also identified for control point p3. In other words, if curvature
monotonic decreasing is desired, the control point p3 may be relocated to the green region, although
this adjustments does not guarantee the absence of inflection points. Moreover, an overlapping region
between the curvature monotonic increasing area of p2 and p3 is represented by a peach colour.
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Fig. 1: Example of monotone curvature increasing.

Figure 2 demonstrates a case of curvature monotonic decreasing as depicted in Figure 2b. As por-
trayed in Figure 2c, the negative ξi values indicate a curvature profile that decreases monotonically. Next,
the visualization of the curvature monotonicity region is shown in Figure 2d. The different shades of green
represent the curvature monotonic decreasing region for each control point, while the purple regions indi-
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cate the curvature monotonic increasing region available for p0 and p1. Note that, the intersection region
between the curvature monotone decreasing p0 and curvature monotone increasing p1 is coloured pink,
whereas the intersection region of curvature monotone decreasing p1 and curvature monotone increasing
p0 is coloured light brown.
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Fig. 2: Example of monotone curvature decreasing.

Conclusions:
Based on the findings, this research uses an iterative grid search to identify control points that meet
curvature monotonicity conditions. This approach provides designers with valuable insights to generate
smooth curves efficiently. By visualizing the curvature monotonicity region, users can easily adjust the
curvature according to their design requirements. Although it does not rely on a real-time GPU-based
approach, it offers a practical alternative for those with limited resources or systems without advanced
graphics capabilities. For simplicity, the study focuses on monotonicity regions without considering
inflection points. One limitation is that each control point’s monotonicity region is based on the original
configuration, so modifying them individually does not ensure global monotonicity and requires iterative
updates once all points are adjusted. Future research will aim to enhance this method by incorporating
optimization techniques to automatically determine control point configurations that more efficiently
satisfy curvature monotonicity.

Acknowledgement:
This research was supported by Ministry of Higher Education Malaysia through Fundamental Research
Grant Scheme (FRGS/1/2023/STG06/USM/03/4) and School of Mathematical Sciences, Universiti Sains
Malaysia. The authors are very grateful to the anonymous referees for their valuable suggestion.

Anis Solehah Mohd Kamarudzaman, https://orcid.org/0000-0002-7449-2242
Md Yushalify Misro, https://orcid.org/0000-0001-7869-0345

Proceedings of CAD’25, Shenzhen, China, June 23-25, 2025, 245-249
© 2025 U-turn Press LLC, http://www.cad-conference.net

https://orcid.org/0000-0002-7449-2242
https://orcid.org/0000-0001-7869-0345
http://www.cad-conference.net


249

References:
[1] Sapidis, N. & Frey, W. Controlling the curvature of a quadratic Bézier curve. Computer Aided Geo-

metric Design. 9, 1992, 85-91.https://doi.org/10.1016/0167-8396(92)90008-D
[2] Frey, W. & Field, D. Designing Bézier conic segments with monotone curvature. Computer Aided

Geometric Design. 17, 2000, 457-483.https://doi.org/10.1016/S0167-8396(00)00011-X
[3] Wang, Y., Zhao, B., Zhang, L., Xu, J., Wang, K. & Wang, S. Designing fair

curves using monotone curvature pieces. Computer Aided Geometric Design. 21, 2004, 515-
527.https://doi.org/10.1016/j.cagd.2004.04.001

[4] Wang, A., Zhao, G. & Hou, F. Constructing Bézier curves with monotone cur-
vature. Journal Of Computational And Applied Mathematics. 355, 2019, pp. 1-10.
https://doi.org/10.1016/j.cam.2019.01.004

[5] Wang, A., He, C., Zheng, J. & Zhao, G. 3D Class A Bézier curves with monotone curvature. Computer-
Aided Design. 159, 2023, pp. 103501. https://doi.org/10.1016/j.cad.2023.103501

[6] Saito, T. & Yoshida, N. Curvature monotonicity evaluation functions on rational Bézier curves. Com-
puters & Graphics. 114, 2023, pp. 219-228.https://doi.org/10.1016/j.cag.2023.05.019

[7] Yoshida, N., Sakurai, S., Yasuda, H., Inoue, T. & Saito, T. Visualization of the curvature monotonic-
ity regions of polynomial curves and its application to curve design. Computer-Aided Design And
Applications. 21, 2024.10.14733/cadconfP.2023.1-5

[8] Yoshida, N. & Saito, T. Curvature Monotonicity Regions of 2D Polynomial and Rational Bézier
Curves as the Intersection of Implicit Regions. Computer-Aided Design And Applications. 22, 2025,
68-80.https://doi.org/10.14733/cadaps.2025.68-80

Proceedings of CAD’25, Shenzhen, China, June 23-25, 2025, 245-249
© 2025 U-turn Press LLC, http://www.cad-conference.net

https://doi.org/10.1016/0167-8396(92)90008-D
https://doi.org/10.1016/S0167-8396(00)00011-X
https://doi.org/10.1016/j.cagd.2004.04.001
https://doi.org/10.1016/j.cam.2019.01.004
https://doi.org/10.1016/j.cad.2023.103501
https://doi.org/10.1016/j.cag.2023.05.019
10.14733/cadconfP.2023.1-5
https://doi.org/10.14733/cadaps.2025.68-80
http://www.cad-conference.net

