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Introduction: 
Nowadays, in the context of manufacturing personalized and distinctive products, STL files are widely 
used to facilitate the reliable and accurate transfer of 3D geometries from CAD modelling software to 
the CNC machines or 3D printers. The challenges of classification of such STL models lie in ensuring the 
efficiency and accuracy of methods for specific classification problems. Whereas numerous 
classification methods are available for wider application, 3D model classification largely relies on 
methods based on convolutional neural networks (CNNs) (e.g., [2, 3, 4, 7]), combined with different 
representations such as point clouds, voxels, or rendered 2D images from different view angles.  

Studies that focus on investigating, developing, and testing neural network architectures for 3D 
geometry classification commonly rely on standard benchmark datasets like ModelNet10 or ModelNet40 
(e.g., [3, 7]). While such datasets are appropriate for training and comparison, due to the large number 
of models across classes, they do not replicate real-world collections of models that usually appear 
across industrial projects. The product portfolio of many companies, particularly in the personalized 
products and prosthetics market, does not consist of geometrically distinctive classes of models that 
appear in benchmark collections, but rather different variants of a small set of products. These products 
are typically configured, customized, or personalized based on customer requirements. The practices 
of geometrical modeling and exporting STL models of product variants in an industry setting can vary 
significantly, meaning that preprocessing of models is commonly needed to harmonize the dataset prior 
to classification. Additionally, the size of real-world, that is, actual industry datasets in the context of 
personalized products, can be relatively small compared to the size of the benchmark collections, with 
uneven distribution of models across classes, which raises concerns about whether some of the 
proposed methods could be implemented for such limited datasets.  

The goal of this paper is to analyze and compare the performance of different classification methods 
on a real-world STL model dataset and to identify the main challenges that arise when dealing with 
limited, unbalanced, and structurally similar data. The product selected for the study is a dental 
abutment – a connector piece that attaches a dental prosthetic, such as a crown, to an implant anchored 
in the jawbone. Dental abutments are usually personalized to fit each individual's unique dental 
structure and aesthetic needs, whereas their general shape depends on the position of the tooth. As a 
result, different classes of abutments (based on the tooth position) are commonly present, with 
personalized geometries within each class. 
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Background: 
Understanding the context and the methods of STL model classification is important for positioning this 
study within the context of classifying real-world industrial datasets. This section shows some examples 
of how STL model classification can be implemented and represented. In particular, the application of 
four different classification neural network-based methods is covered: (1) PointNet [3], [9], (2) Volumetric 
CNN [7, 10], (3) Multi-View CNN [1, 2], and FusionNet [4]. In addition, this section reviews one of the 
available ways for comparing STL files [5, 6] and methods for translating STL models to other formats, 
such as voxel [8] and images [2]. 

One of the simplest ways to interpret STL models is as a set of points. Using this approximation, 
comparisons between two models can be made using measures for analyzing the differences between 
sets of points. For example, the Hausdorff distance between two sets of points can be used in shape 
matching or pattern recognition [6] or 3D object recognition (which can be applied to classification 
tasks) [5]. For calculating distance measures, the Euclidean distance is used, which is integrated into the 
algorithm's residue [6]. The same STL model representation can be used for PointNet, a pioneering 
method that uses unordered point clouds as input into a neural network [9]. This novel deep learning 
architecture for object classification or segmentation was developed by Qi et al. [9], whereas a similar 
method was used by Gu et al. [3], whose study focused on research methods that can be used on data 
sourced from lidar sensors. The proposed network architecture was tested on object-level datasets like 
ModelNet40, ScanObjectNN, and ShapeNetPart and validated on the scene-level dataset KITTI [3]. The 
architecture achieved a shape classification accuracy of 86.4% on the real-world ScanObjectNN. 

While the PointNet method uses the point cloud as direct input into the CNN [9], the volumetric CNN 
uses a voxel matrix as input [10]. Decomposing STL models into a set of voxels allows for the description 
of the continuous model with minimal error [8]. Models generated in this way require large storage if 
one wants to replicate complex surface models with small error values. For example, models represented 
using 400x400x400 voxels require 64 MB of storage space [8]. Using an octree representation of voxel 
models, memory usage can be significantly reduced [7]. Examples of volumetric CNNs application are 
reported in Wang et al. [10] and Muzahid et al. [7], who tested their volumetric CNN architecture on the 
ModelNet benchmark dataset, achieving accuracy of up to 91.1%. Additionally, the accuracy improved 
by combining volumetric CNN and NormalNet architecture to 93.1%. 

In addition to analyzing 3D models as point clouds or voxel representations, classification can also 
be performed using the Multi-View CNN [1, 2]. In this method, each view of the model is represented as 
a 2D image and is analyzed separately using a neural network. Results from all model views are 
combined and used for object detection or classification. Using this method, validation accuracy can 
reach up to 95% [2]. A similar network architecture was used for classifying CAD models, where 2D 
images are rendered from CAD models. When using a method similar to Multi-view, the validation 
accuracy of the MVCNN++ method can be as high as 95.45% [1]. 

The last reviewed network architecture is the FusionNet. To improve classification performance, a 
combination of voxel and 2D images can be used as input data [4]. ModelNet10 and ModelNet40 datasets 
were used for training and validation, whereas the obtained results demonstrate the importance of using 
multiple representations of a model to improve classification performance [4]. 

Most studies use standard benchmark datasets for testing network architectures, achieving 
validation accuracy of up to 95% [1]. From the analyzed papers, it is observed that there is a lack of 
testing different classification methods on real-world datasets, such as personalized products, where 
there is a shortage of models for training networks and smaller difference between classes. 

Methodology: 
To compare different classification methods for real-world STL files, a dataset of 1560 individual dental 
abutment models was used. The dataset was provided by a company that designs and manufactures 
dental prosthetics and other related products. The models from the dataset belong to seven classes, 
designated as tooth positions from 1 to 7, which correspond to the different positions of the 
corresponding teeth. This dataset is specific as the models, which nominally belong to the same class 
(designed for the same tooth position), can exhibit significantly different geometric characteristics. In 
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contrast, there are many cases where the difference between the two classes is not obvious when 
performing a visual inspection of geometry.  
    Examples of abutment models corresponding to each class are shown in Figure 1. The models on the 
top represent the characteristic geometries that are distinctive for a specific position. The models in the 
middle show the average geometries which are most common within a class. Finally, the bottom row 
shows examples of indistinctive models, with geometry that cannot be classified in a straightforward 
manner. 
 

       
 

Fig. 1: Dataset sample. 
 

Besides the differences in geometry, the collected STL files were generated by different individuals using 
several different oral 3D scanners and dental and general-purpose CAD tools, which resulted in 
inconsistent mesh resolution, origin positions, and model orientations. Therefore, before applying the 
different classification methods, the models first had to be realigned (preprocessed). To do so, the center 
point of the model bounding box was translated to the coordinate 0, 0, 0 (X, Y, Z), as shown in Figure 2, 
left. After the translation, each model was additionally rotated around the Z-axis to the position in which 
the Hausdorff distance between the reference model (manually selected example) and the aligned model 
was minimal. The next figure shows two STL files before (left) and after the alignment process (right). 

 

 
 

Fig. 2: Example of model realignment. 

 

After the alignment, five different classification methods were applied to the dataset: (1) Hausdorff 
distance, (2) PointNet, (3) Volumetric CNN, (4) Multi-View CNN, and (5) FusionNet. As shown in Figure 3, 
three basic types of input data were used across these five methods: point clouds (1 and 2), voxels (3 
and 5) and images (4 and 5).  

 

 
 

Fig. 3: Types of input data used in the classification methods. 
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Finally, the following three performance metrics were used for the purpose of comparing the five 
selected classification methods: (1) average classification time, (2) number of epochs, and (3) accuracy 
(inspired by the metrics used in studies [2], [3], [4]).  

• Average classification time metric reveals how much time was needed for the classification of 
a single STL model (average time per model). 

• Accuracy metric represents the percentage of properly classified STL models. Accuracy was 
calculated based on validation sample (models that were not used for training, which represent 
20% of the overall dataset. 

• Number of epochs metric reveals the number of training cycles required for the model's 
accuracy to converge for methods based on trained neural network. 

Results: 

The dataset was classified using the five methods, which were then compared using the three metrics. 
The performance of each method in terms of the average classification time in seconds, the number of 
epochs before the method converged (where applicable) and the classification accuracy is presented in 
Tab 1.  

    Classification using Hausdorff distance exhibits low accuracy (32.8%) but does not require training. 
The other methods require approximately two hours of training time. Namely, the training involved 
tuning of large number of parameters, such as batch size, number of network layers, division of training 
and testing sample, etc., and was performed using the following configuration: Intel Core I7 12700K, 32 
GB of RAM, and NVIDIA RTX A2000 GPU. PointNet shows slightly better performance; however, the 
accuracy is still relatively low (38.8%). The best performance was achieved when using the FusionNet 
method with an accuracy of 62.6% and an average classification time of 0.73 s. When using only the 
Volumetric CNN method, the accuracy is slightly worse, but the average classification time is fairly lower. 
 

 
Hausdorff 
distance 

PointNet 
Volumetric 

CNN 
Multi-
View 

FusionNet 

Average classification time [s] 1.09 0.70 0.50 0.60 0.73 

Number of epochs - 11 21 16 11 

Accuracy [%] 32.8 38.2 54.8 55.79 62.6 

 

Tab. 1 Metrics values. 
 

Results presented in Table 1 reveal information about the performance of each method, but do not 
provide insights into the geometric characteristics of incorrectly classified models. Therefore, an 
additional figure is shown, where one specific model example is presented for each class (tooth position), 
which was not correctly classified by none of the method (Fig. 4).   

 

 
 

Fig. 4 Examples of models that were incorrectly classified by all methods and their corresponding correct 
classes. 
 

Most models that were not correctly classified fit into the vague category of models introduced in Figure 
1, meaning that they are challenging to classify based on visual inspection as well. For example, when 
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comparing the model that was not successfully classified as class 1 (the leftmost in Table 2) with models 
shown in Figure 1, it can be seen that this model is geometrically more similar to the distinctive model 
of class 6 rather than any model from class 1. Similar observations can be made for other examples. The 
most persistent classification mistakes by all tested methods were made in-between classes 6 and 7. Not 
only is their geometry visually similar, but they exhibit similarities with models from classes 1 and 2. 
After analyzing all incorrectly classified models, such as the examples from Table 2, it can be concluded 
that there were generally no problems with the classification of models that contain distinctive, class-
specific features (e.g., the top row in Figure 1). Most of the misclassification cases were related to models 
containing vague features (bottom row in Figure 1), with some examples of “average” models as well 
(middle row in Figure 1). 

Discussion and conclusion: 
The study compares different methods for STL model classification on a dataset of 1560 STL models of 
dental abutments. This abutment dataset is specific compared to the typically used datasets in CAD 
model classification studies, as it represents a collection of models characterized by a low quantity and 
inconsistent distribution of models per class. As such, it mirrors the problem often found in industry – 
the lack of models, the high similarity expressed between different classes of models, and the limited 
computational resources. Therefore, the main goal of this study was to identify the challenges faced in 
addressing the classification of such datasets using well-established classification methods. 

 Through this comparative study, the usage of existing classification methods doesn’t yield results 
with high accuracy. Better results could potentially be achieved by considering additional methods and 
additional preprocessing steps. The use of a classification method that combines voxels and 2D images 
gives better results (as demonstrated by the FusionNet method), and one possible way to improve 
accuracy is by using higher-resolution voxel models and images. This improvement presents challenges 
related to the large amount of data, which requires significant computational resources (especially 
memory) that are typically unavailable in industrial environments. For the same purpose, one must 
consider the use of additional input parameters and the detection of specific features related to the 
dataset, which can aid in classification.  

Most industrial datasets require preprocessing, such as translation and rotation of models, repairing 
of meshes, or remeshing models. The influence of preprocessing on classification performance, such as 
accuracy, is not known for specific cases and needs to be investigated. An additional problem with the 
dataset is that the original STL models are generated in different CAD tools by various users, and these 
models differ in aspects such as resolution or mesh generation logic. This issue can influence results, 
especially for methods that use point clouds. The influence of all these input factors must be 
investigated. The last aspect to be considered is the capability of an expert to correctly classify STL 
models. Future studies could thus answer the following question: Can an expert, who creates these types 
of models, correctly classify a specific dataset, and what is the actual classification accuracy that we can 
expect? 

Despite the identified challenges, this study has several limitations. The methods considered were 
tested on a single real-world dataset, meaning that the results could vary for other cases. Moreover, due 
to the scope of the paper, only five classification methods have been analyzed and tested. Further testing 
of new methods could result in significantly better performance and must be considered in future work. 
Also, as mentioned earlier, the resolution of the voxel and image model representations was relatively 
low, due to the limitations imposed by the computational resources. Future studies should investigate 
the resolution’s effect on classification performance. The last limitation is closely related to the 
challenge of dealing with a real-world dataset, which in this case consisted of a relatively small number 
of models that are not uniformly distributed across classes. For example, one of the classes only had 50 
models for network training and testing, while the others had up to 200 models. Hence, the effect of 
increasing the number of models and harmonizing their distribution across classes should also be 
considered in further studies. 
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