
17

Title:
Robust Segmentation of CAD-generated STL �les

Authors:
Tathagata Chakraborty, tathagata_chakr@hcl-software.com, HCLTech
Manoj Bhonge, manoj.bhonge@hcl-software.com, HCLTech
Abhijit Kumthekar, abhijit.kumthemar@hcl-software.com, HCLTech
Nitin Umap, nitin.umap@hcl-software.com, HCLTech

Keywords:
STL, Mesh Segmentation

DOI: 10.14733/cadconfP.2025.17-23

Introduction:
Since they were �rst introduced in 1987, STL �les have remained the most popular 3D �le format for
3D data exchange. The use of STL �les has increased in recent years with the popularity of 3D printing
where it is the �le format of choice [10, 11]. The STL �le format is also very simple, which makes it easy
to read from and write to, thus enabling widespread support across all CAD/CAM/CAE products.

STL �les are also popular in Computer Aided Manufacturing (CAM) [15] (primarily due to security
concerns), where a majority of parts are still manufactured using two and three-axis machining techniques
[1], and where the information required for manufacturing can be obtained from STL �les. Manufacturing
is often outsourced to manufacturing shops, that may not have the same level of security [17]. It is of
competitive importance to protect the original parametric part designs [8], and STL �les, which encode in
them the very minimal amount of 3D geometry required for manufacturing, are often a preferred format
for sharing this information, despite several limitations [5].

CAM applications can, however, signi�cantly bene�t if the STL �le is face-segmented [2]. An accu-
rately face-segmented model allows the CAM programmer to quickly select regions in a part for selective
processing [3]. For example, the user may want to generate di�erent toolpaths and operations for di�er-
ent pockets, holes, and other features, which would require the user to select all the triangles comprising
these features. However, a particular feature geometry may be de�ned by thousands of triangles, and
selecting these manually can be tedious.

Reverse Engineering and Mesh Segmentation:
There are various reasons why one may want to reverse engineer STL �les [7, 12], but this process is very
di�cult to automate when accurate segmentation is required [9]. Traditional methods for mesh segmena-
tion include region growing, hierarchical clustering, and spectral clustering, each with its own strengths
and limitations [16, 2]. Region growing methods, begin with seed components and iteratively expand
clusters based on geometric features, but they can be sensitive to seed selection and may struggle with
noisy data [13]. Spectral clustering approaches utilize the eigenvalues of the Laplace-Beltrami operator
to partition meshes, o�ering robustness to topological variations. However, they can be computationally
intensive [4]. With the advent of deep learning, supervised methods have emerged, such as Graph Convo-

Proceedings of CAD'25, Shenzhen, China, June 23-25, 2025, 17-23
© 2025 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net


18

Fig. 1: Left: Typical tessellation of a CAD-generated STL. Middle and Right: Segmentation results of
relatively simple STLs.

lutional Neural Networks (GCNNs), which treat meshes as graphs and learn to segment them e�ectively.
These methods can capture complex patterns but require substantial labeled data for training [14].

In traditional mesh segmentation methods and their applications high-accuracy is not required or
expected. However, with CAD-generated STL �les, for use in downstream applications like CAM, the
expectation is that the faces should be accurately segmented with perfect boundaries. Popular approaches
like region growing and clustering work well on meshes obtained from a diverse range of domains but are
not very accurate on CAD-generated STL �les where is tessellation is highly non-uniform. In this paper
we describe a method for robustly segmenting STL �les generated from parametric CAD applications.
We use an often overlooked property of such �les, namely, that here the facets comprising a face are stored
contiguously. Leveraging this we describe an algorithm that can incorporate multiple edge identi�cation
rules for robust segmentation results. We also brie�y describe a visual correction and inspection tool that
can help correct any segmentation issues.

Robust Segmentation of CAD-generated STL:
In general, in STL �les the triangles are stored in arbitrary order. When STL �les are generated from non-
parametric CAD applications, the order of triangles in the STL �le is unpredictable and depends on the
algorithm used. STLs generated from parametric CAD applications, on the other hand, are triangulated
face-by-face and have a certain tessellation aesthetic that is readily apparent (see Fig. 1 (left)).

Due to the face-by-face triangulation, the tesselation of each face is stored in a contiguous section
but the faces themselves may follow in an arbitrary order. For example, if δi represents the triangles
comprising the ith face in the CAD �le (say, comprising of n faces), then the triangles in the STL will
be stored as (δ1, δ2, δ3, · · · , δn). One way, therefore, to segment the faces would be to identify the
boundaries between a pair of neighboring contiguous sections (that is, between say δi and δi+1), that is
to determine in the list of triangles in an STL �le where one face ends and the next face starts.

This signi�cantly simpli�es the face segmentation problem by constraining the result. For example,
a segmentation where the triangles are not contiguous is wrong. Additionally, in the segmentation
each region must have a connected outer loop and zero or more connected inner loops. If these loops
are not complete, then the segmentation is likely still incomplete. These constraints are inviolable in
CAD-generated STLs. In the next section we explain how these constraints can be used to develop a
segmentation algorithm.

Segmentation Algorithm Overview:
Our method needs at least one heuristic for identifying edges at face boundaries. These heuristics should

Proceedings of CAD'25, Shenzhen, China, June 23-25, 2025, 17-23
© 2025 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net


19

be conservative and should identify a separating edge with a very high probability. Conservative rules
lead to better segmentation, whereas, less strict rules result in too many faces. Conservative rules can
sometimes club together several smoothly connected faces (typially �llets and chamfers). However, in
most cases, the constraints of the structure of the �le often prevent such clubbing. When some faces are
clubbed together and recognized as a single face, a visual correction and inspection tool can be used to
separate the faces easily. Fig. 1 shows two examples of segmentation on simple meshes.

Often just one conservative rule is su�cient to segment most CAD-generated STL �les. This rule
uses the sharpness of the edge to identify a face boundary with high accuracy. This single rule works
well for prismatic CAD models that do not contain �llets or chamfers. That said, even in the presence
of �llets and chamfers, where the face boundaries cannot be detected, our algorithm often segments the
face correctly, as long as these faces are bounded on each side by faces that were sucessfully detected.

Overall Algorithm:
Assume that we have a function FindFace that can detect the end of a face in the list of triangles
in the STL �le. This function takes a start index of the face and returns a pair of values, the �rst of
which indicates the end index of the last triangle in the face and the second boolean value that indicates
whether the search was successful. We will describe this function in the next section later. The overall
algorithm FindAllFaces simply calls the FindFace function repeatedly till all the facets are processed.
The function FindAllFaces returns a list of indices indicating where each face ends.

Algorithm 1: Overall Algorithm

Input: body // STL body with connectivity information

F = [f1, f2, · · · , fn] // face edge detection functions

Function FindAllFaces(body, F):

N ← NumTriangles(body)
idxc ← 0 // current start index

I ← [] // list of face end indices

while idxc < N − 1 do
(idxf , valid)← FindFace(body, F, idxc)
if valid then

if failedlast then
I ← I ∪ idxc − 1
failedlast ← false

end

I ← I ∪ idxf

idxc ← idxf + 1

end

else

idxc ← idxc + 1
failedlast ← true

end

end

return I

This algorithm is shown below. Some implementation details have been omitted for legibility. It is also
assumed that the connectivity of the triangles has been computed and stored in a half-edge data structure

Proceedings of CAD'25, Shenzhen, China, June 23-25, 2025, 17-23
© 2025 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net


20

since this is required by the FindFace function. The algorithm must additionally include data-structures
that map a facet to a segmented face and query edges already identi�ed as boundary edges. Properly
caching this information can lead to signi�cant improvements in the performance of the algorithm.

The basic idea is to start with the current index idxc set to 0 and �nd the end index of the �rst face
idxf . If the FindFace function is successful then we add the end index idxf to the list I, update the
start index idxc to idxf +1. If on the other hand the FindFace function fails, then we only increment the
current index idxc by 1 and call the FindFace function again. When all triangles have been processed,
we return the list I from the function, that now contains the end indices of the identi�ed faces.

Face Segmentation Algorithm:
The FindFace function uses a half-edge data structure encoding the connectivity of the triangles in the
STL [6]. The FindFace function is shown below.

Algorithm 2: FindFace Algorithm

Input: body // STL body with connectivity information

F = [f1, f2, · · · , fn] // face edge detection functions

Function FindFace(body, F , idxs):

N ← NumTriangles(body)
idxc ← idxs // current start index

LCl ← [] // list of face boundary coedge lists

while idxc < N − 1 do
MergeCoedgeLists(LCl)
if size(LCl) > 0 ∧AreLoopsComplete(LCl) then

return (idxc − 1, true)
end

f ← GetFacet(body, idxc)
Cl ← FindHardEdgesInFacet(f, F )
LCl ← LCl ∪ Cl

idxc ← idxc + 1

end

MergeCoedgeLists(LCl)
if size(LCl) > 0 ∧AreLoopsComplete(LCl) then

return (idxc − 1, true)
end

return (idxs, false)

The FindFace function maintains a list of coedge lists LCl. The coedges stored in these lists are
those identi�ed by at least one of the edge detection functions F or those marked as face boundary
from previously detected faces. The function starts from the input index idxs and gets the triangle
corresponding to that index. The FindHardEdgesInFacet function tries to identify any face boundary
edges in this facet using the functions F and from previously identi�ed face boundaries. If any such edges
are detected then their corresponding coedges are appended to the list of list CLl. If possible the coedge
is appended to a coedge list to which it is connected. Otherwise a new list is created and the coedges
added to the new list.

Before analyzing the next facet, a function called MergeCoedgeLists is called that tries to identify
and merge the separate lists in CLl if they can be connected. Additionally we check if all the coedge

Proceedings of CAD'25, Shenzhen, China, June 23-25, 2025, 17-23
© 2025 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net


21

lists in the CLl list form loops. If all the coedge lists form loops after merging, then we have successfully
identi�ed a face and return the last index that was analyzed. The implementations of the functions
MergeCoedgeLists, FindHardEdgesInFacet and AreLoopsComplete have been left out.

The FindFace algorithm as shown in Alg. 2 can be slow when it fails to detect a face as, for example,
when it fails to detect a face boundary edge and thus fails to close a coedge loop. In such cases it will
try checking all triangles till the end of the �le but will still fail in every case. To improve performance
the FindHardEdgesInFacet function can return the index of the facet neighboring a hard edge when a
hard edge is found. This index can be used to limit the value of the index till which the algorithm checks
for a valid face.

Visual Inspection and Correction:
With an appropriate set of face boundary detection functions F , many faces in a typical STL �le can be
successfully detected. However in some cases two or more faces which are smoothly connected and occur
next to each other in the STL can get clubbed (this typically happens in the case of �llet or chamfer
chains). Manual user intervention is then required to correct this. Again, the contiguous nature of the
face facets can be leveraged to correct such cases by providing visual feedback to the user.

Fig. 2: Illustrating a segmentation result where �llets have been incorrectly grouped and two more
segmentation results on medium complexity models.

The user �rst opens the STL �le in a visualization application where the faces of the segmented STL
�le are color coded randomly. The user next identi�es by visual inspection any cases where two or more
faces have been inaccurately merged together (refer to Fig. 2). In such cases the user selects a random
triangle in the merged face (1 in Fig. 2) and uses two sliders (2 in Fig. 2) to extend the selection to the
actual face. Once such selection is done the user clicks a button to mark this as a face. Alternately, in
order to further speed up the process of selection, softer versions of the face boundary detection functions
maybe used to extend the user selection to the nearest face boundaries.

Limitations and Conclusions:
Our method does not work with STL �les generated from non-parametric CAD applications, for example,
3D sculpting applications, and reverse engineering applications that generate STL �les from point clouds.
In engineering domains though, the STL �les are typically generated from parametric CAD applications,
and here the facets for each parametric face in the model are always contiguous in the STL �le. Our
method is designed for only such STL �les.

Our method may also sometimes club neighboring faces when they are smoothly connected (for
example, in the case of �llet chains, where the �llets are next to each other in the STL �le, and it
is very di�cult to identify the face edges). This may then require manual correction in regions where a

Proceedings of CAD'25, Shenzhen, China, June 23-25, 2025, 17-23
© 2025 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net


22

perfect segmentation results is expected. That said, the visual inspection and correction tool described
here can signi�cantly reduce the tediousness involved in correcting these segmentation issues.

Acknowledgement:
This research was conducted as a part of the research and development e�orts of the CAMWorks team in
HCLTech. We are thankful to the CAMWorks team, and especially to Baburaj Iyer and Vivek Govekar
for allowing us the time to undertake this research.

Tathagata Chakraborty, https://orcid.org/0000-0002-2752-2533
Manoj Bhonge, https://orcid.org/0000-0001-7638-4600
Abhijit Kumthekar, https://orcid.org/0000-0001-9362-7141
Nitin Umap, https://orcid.org/0000-0002-9063-1230

References:
[1] Abdullah, H.; Ramli, R.; Wahab, D. A.: Tool path length optimisation of contour parallel milling

based on modi�ed ant colony optimisation, The International Journal of Advanced Manufacturing
Technology, 92, 2017, 1263-76. https://doi.org/10.1007/s00170-017-0193-5

[2] Agathos, A.; Pratikakis, I.; Perantonis, S.; Sapidis, N.; Azariadis, P.: 3D mesh segmentation
methodologies for CAD applications, Computer-Aided Design and Applications, 4(6), 2007, 827-41.
https://doi.org/10.1080/16864360.2007.10738515

[3] Al-wswasi, M.; Ivanov, A.: A novel and smart interactive feature recognition system for rotational
parts using a STEP �le, The International Journal of Advanced Manufacturing Technology, 104, 2019,
261-84. https://doi.org/10.1007/s00170-019-03849-1

[4] Bao, X.; Tong, W.; Chen, F.: A Spectral Segmentation Method for Large
Meshes, Communications in Mathematics and Statistics, 2023 Sep, 11(3), 583-607.
https://doi.org/10.1007/s40304-021-00265-4

[5] Bonnard, R.; Hascoët, J. Y.; Mognol, P.: Data model for additive manufacturing digital thread: State
of the art and perspectives, International Journal of Computer Integrated Manufacturing, 32(12),
2019, 1170-91. https://doi.org/10.1080/0951192x.2019.1690681

[6] Brönnimann, H.: Designing and implementing a general purpose halfedge data structure, In Algo-
rithm Engineering: 5th International Workshop, WAE 2001 Århus, Denmark, August 28-31, 2001
Proceedings, 5, 2001, 51-66. https://doi.org/10.1007/3-540-44688-5_5

[7] Buonamici, F.; Carfagni, M.; Furferi, R.; Governi, L.; Lapini, A.; Volpe, Y.: Reverse engineering
of mechanical parts: A template-based approach, Journal of computational design and engineering,
5(2), 2018, 145-59. https://doi.org/10.1016/j.jcde.2017.11.009

[8] Chaduvula, S. C.; Dachowicz, A.; Atallah, M. J.; Panchal, J. H.: Security in cyber-enabled design
and manufacturing: A survey, Journal of Computing and Information Science in Engineering, 18(4),
2018. https://doi.org/10.1115/1.4040341

[9] Hao, J.; Fang, L.; Williams, R. E.: An e�cient curvature-based partitioning of large-scale STL models,
Rapid Prototyping Journal, 17(2), 2011, 116-27. https://doi.org/10.1108/13552541111113862

[10] Iancu, C.; Iancu, D.; St ncioiu, A.: From CAD model to 3D print via �STL� �le format, Fiability &
Durability/Fiabilitate si Durabilitate, (1), 2010.

[11] Kumar, V; Dutta D.: An assessment of data formats for layered manufacturing, Advances in Engi-
neering Software, 28(3), 1997, 151-64. https://doi.org/10.1016/s0965-9978(96)00050-6

[12] Kumar, A.; Jain, P. K.; Pathak, P. M.: Industrial application of point cloud/STL

Proceedings of CAD'25, Shenzhen, China, June 23-25, 2025, 17-23
© 2025 U-turn Press LLC, http://www.cad-conference.net

https://orcid.org/0000-0002-2752-2533
https://orcid.org/0000-0001-7638-4600
https://orcid.org/0000-0001-9362-7141
https://orcid.org/0000-0002-9063-1230
https://doi.org/10.1007/s00170-017-0193-5
https://doi.org/10.1080/16864360.2007.10738515
https://doi.org/10.1007/s00170-019-03849-1
https://doi.org/10.1007/s40304-021-00265-4
https://doi.org/10.1080/0951192x.2019.1690681
https://doi.org/10.1007/3-540-44688-5_5
https://doi.org/10.1016/j.jcde.2017.11.009
https://doi.org/10.1115/1.4040341
https://doi.org/10.1108/13552541111113862
https://doi.org/10.1016/s0965-9978(96)00050-6
http://www.cad-conference.net


23

data for reverse engineering, DAAAM International Scienti�c Book, 2012, 445-62.
https://doi.org/10.2507/daaam.scibook.2012.38

[13] Liang, C.; Yin, J.; Wu, J.; Wang, J.; Wei, M.; Guo, Y.: A survey of 3D mesh segmentation based
on clustering analysis, Journal of Computer-Aided Design & Computer Graphics, 2020 Apr 20, 32(4),
680-92. https://doi.org/10.3724/SP.J.1089.2020.17976

[14] Perek, E, K: Supervised mesh segmentation for 3d objects with graph convolutional neural networks,
Master's thesis, Middle East Technical University (Turkey).

[15] Qu, X.; Stucker, B.: Raster milling tool-path generation from STL �les. Rapid Prototyping Journal,
12(1), 2006, 4-11. https://doi.org/10.1108/13552540610637219

[16] Shamir, A.: A survey on mesh segmentation techniques, InComputer graph-
ics forum, Oxford, UK: Blackwell Publishing Ltd., 27(6), 2008, 1539-1556.
https://doi.org/10.1111/j.1467-8659.2007.01103.x

[17] Tuptuk, N.; Hailes, S.: Security of smart manufacturing systems, Journal of manufacturing systems,
47, 2018, 93-106. https://doi.org/10.1016/j.jmsy.2018.04.007

Proceedings of CAD'25, Shenzhen, China, June 23-25, 2025, 17-23
© 2025 U-turn Press LLC, http://www.cad-conference.net

https://doi.org/10.2507/daaam.scibook.2012.38
https://doi.org/10.3724/SP.J.1089.2020.17976
https://doi.org/10.1108/13552540610637219
https://doi.org/10.1111/j.1467-8659.2007.01103.x
https://doi.org/10.1016/j.jmsy.2018.04.007
http://www.cad-conference.net

