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Introduction:

In this work, we propose a method for visualizing the curvature monotonicity region of 3D Bézier curves.
The curvature monotonicity region refers to the area in which a control point causes the curvature to
change monotonically. Sapidis et al. theoretically clari�ed the curvature monotonicity region for quadratic
Bézier curves [3], while Frey et al. extended this analysis to rational quadratic Bézier curves [1]. Yoshida
et al. introduced a real-time GPU-based visualization method for the curvature monotonicity region of
cubic and higher-degree Bézier curves [5]. Saito et al. further extended this approach to rational Bézier
curves by introducing curvature monotonicity evaluation functions based on the Bernstein basis [2]. Prior
to this work, no analysis or visualization of the curvature monotonicity region for 3D Bézier curves had
been performed.

In this abstract, we extend the methods from [5, 2] to 3D polynomial and rational Bézier curves. The
curvature monotonicity region exists in 3D for 3D curves. The key idea of our approach is to visualize the
curvature monotonicity region on a constant-depth plane passing through the control point of interest.
For 3D Bézier curves, this approach enables users to identify the region of a control point where the
curvature changes monotonically.

Curvature Monotonicity Evaluation Function:

This section provides a brief review of the curvature monotonicity evaluation functions (CMEFs) intro-
duced by Saito et al. [2]. As described in [2] for 2D curves, CMEFs help keep the fragment shader
compact and e�cient for GPU execution, and the same holds for 3D curves.

A 3D rational Bézier curve P(t) of degree n(≥ 3) with n + 1 control point vectors pi = [xi yi zi]
T

(0 ≤ i ≤ n) and positive weights wi(wi > 0) is

P(t) =

∑n
i=0 B

n
i (t)wipi∑n

i=0 B
n
i (t)wi

=
Q(t)

W (t)
, (2.1)

where Bn
i (t) is the Bernstein polynomial of degree n. We assume that the curve is regular and that the

curvature is nonzero. If all the weights wi are 1, the curve is a polynomial Bézier curve. For a 3D curve
P(t), the derivative of the curvature with respect to the arc length shown in [4] is

dκ

ds
=

(
(Ṗ ∧

...
P) · (Ṗ ∧ P̈)

)
(Ṗ · Ṗ)− 3

(
(Ṗ ∧ P̈) · (Ṗ ∧ P̈)

)
(Ṗ · P̈)

(Ṗ · Ṗ)3|Ṗ ∧ P̈|
, (2.2)
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where · and ∧ are dot and cross products, and Ṗ, P̈ and
...
P are the �rst, second, and third derivatives of

P(t) with respect to t. We write the numerator of Eq. (2.2) as

Ln(t) =
(
(Ṗ ∧

...
P) · (Ṗ ∧ P̈)

)
(Ṗ · Ṗ)− 3

(
(Ṗ ∧ P̈) · (Ṗ ∧ P̈)

)
(Ṗ · P̈). (2.3)

With the assumption that the curve is regular and the curvature is nonzero, the denominator of Eq. (2.2) is
always positive. Therefore, the curvature monotonicity can be evaluated using Ln(t). For rational curves,
Ln(t) is a rational function whose denominator is always positive. Thus, the curvature monotonicity is
determined by the numerator of Ln(t), which we denote as ln(t) (See Eq. (2.7)). We refer to Ln(t) or
ln(t) as the curvature monotonicity evaluation function.

Saito et al. derived equations for Ln(t) and ln(t) in Bernstein basis [2]. We use these Bernstein basis
equations to visualize the curvature monotonicity regions of 3D curves. To represent Ln(t) and ln(t)
in the Bernstein basis, we utilize internal division points and weights of de Casteljau's algorithm. For
0 ≤ k ≤ m ≤ n, k-th internal division point Qm,k(t) and weight Wm,k(t) at (n−m)-th step are given by:

Qm,k(t) =

n−m∑
i=0

Bn−m
i wk+ipk+i, Wm,k(t) =

n−m∑
i=0

Bn−m
i wk+i. (2.4)

If both m and k are single-digit integers, the comma between them is omitted, as in Q01. The advantage
of the Qm,k expression is that expressions involving derivatives up to the m-th order can be derived using
Qi,k (1 ≤ i ≤ m) for curves of degree n.

For a 3D polynomial curve P(t) of degree n(n ≥ 3),

Ln(t) = (V4 · V3)(V1 · V1)− 3(V3 · V3)(V1 · V2), (2.5)

where

V1 = n (Q11 −Q10), V2 = n(n− 1) (Q22 − 2Q21 +Q20),

V3 = n2(n− 1) (Q20 ∧Q21 +Q22 ∧Q20 +Q21 ∧Q22),

V4 = n2(n− 1)(n− 2) ((1− t)(Q31 −Q30) ∧ (2Q31 − 3Q32 +Q33)

+ t (Q30 − 3Q31 + 2Q32) ∧ (Q33 −Q32)) ,

and the curvature monotonicity can be evaluated with the degree 6n− 11 function Ln(t).
In the degree n rational space Bézier curve P (n ≥ 3),

Ln(t) =
ln(t)

(W (t))11
, (2.6)

where

ln(t) = n(((V5 ∧ V6) · V7)(V5 · V5) + 3(V7 · V7)(V8 · V5)), (2.7)

V5 = n (W10Q11 −W11Q10),

V6 = n(n− 1)(n− 2)(W30Q33 − 3W31Q32 + 3W32Q31 −W33Q30),

V7 = n(n− 1)(W22(Q20 ∧Q21) +W21(Q22 ∧Q20) +W20(Q21 ∧Q22)),

V8 = n2(n− 1) ((1− t)(2W11(W20Q21 −W21Q20)−W10(W20Q22 −W22Q20))

+ t (W11(W20Q22 −W22Q20)− 2W10(W21Q22 −W22Q21)),

and the curvature monotonicity can be evaluated with the degree 11n− 18 function ln(t).
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In 3D polynomial or rational curves, Ln(t) or ln(t) can be expressed as a polynomial of degree nc in
Bernstein form:

λ(t) =

nc∑
i=0

Bnc
i (t)ξi. (2.8)

For 3D polynomial curves, nc = 6n − 11 and λ(t) corresponds to Eq. (2.5). For 3D rational curves,
nc = 11n− 18 and λ(t) corresponds to Eq. (2.7).

The curvature monotonicity can be evaluated by checking if λ(t) changes its sign within t ∈ [0, 1]. We
refer to the condition described below as the exact curvature monotonicity condition, or simply the exact

condition.
λ(t) ≤ 0 or λ(t) ≥ 0 for t ∈ [0, 1] (2.9)

If λ(t) ≤ 0 for t ∈ [0, 1], the curvature is monotonically decreasing. Conversely, if λ(t) ≥ 0 t ∈ [0, 1], the
curvature is monotonically increasing. We refer to the following condition as the su�cient condition.

ξi ≤ 0 (0 ≤ i ≤ nc) or ξi ≥ 0 (0 ≤ i ≤ nc) (2.10)

From the convex hull property, it is evident that if the su�cient condition is satis�ed, the exact condition
is also satis�ed. Note that the exact condition may be satis�ed even if the ξis have di�erent signs. We
visualize the curvature monotonicity regions of 3D curves using the exact and su�cient conditions.

Visualization of Curvature Monotonicity Regions of 3D Bézie rcurves :

In 3D curves, the curvature monotonicity region of a control point exists in 3D space. We propose
a method to visualize this region by displaying its intersection with a 2D plane. The region can be
interactively explored by adjusting the viewing parameters.

Let pj be the control point for which we wish to visualize the curvature monotonicity region. Let
Tp represent the matrix that transforms a point from world coordinates to screen coordinates. The
matrix Tp is the product of the viewing, projection, and viewport transformations. By multiplying pj ,
expressed in homogeneous coordinates, by Tp, we can obtain the depth d of pj . We visualize the curvature
monotonicity region of pj as its intersection with a plane at depth d.

Similarly to [5, 2], we visualize the curvature monotonicity region by checking the curvature mono-
tonicity for every pixel in a screen window using a GPU. Algorithm 1 presents a method for checking
curvature monotonicity, implemented in a fragment shader using OpenGL.

Algorithm 1. Curvature monotonicity region of pj

(1) Using the screen coordinates along with the depth d, we perform the inverse transformation T−1
p

to obtain the 3D coordinates p′
j .

(2) Replace pj with p′
j , and check the curvature monotonicity using either Eq. (2.5) or (2.7), following

a similar algorithm to Algorithm 1 in [5].

(3) If the curvature is monotonically varying, the pixel is colored with the user-speci�ed color.

To visualize the curvature monotonicity regions of all control points simultaneously, Algorithm 1 is
repeated for each control point within the fragment shader.

Fig. 1 shows the curvature monotonicity regions of a cubic Bézier curve with p0 = [0 0 0]T, p1 =
[0.2 0 0]T, p2 = [0.6 0.2 0.1]T, p3 = [0.8 1 0.2]. In Fig. 1(a), the curve is polynomial, as all weights are 1.
Note that the depth of each region, corresponding to each control point, is di�erent. In the upper left of
the �gure, the curvature plot is shown. Fig. 1(b) and (c) show the same curve from di�erent viewpoints.
Since we visualize the curvature monotonicity region as the intersection with a constant-depth plane, the
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Fig. 1: Curvature monotonicity region of cubic Bézier curves

shape of the region varies depending on the viewpoint. In Fig. 1(d), with the same viewpoint A, w1 is set
to 0.75 and the curvature remains monotonically decreasing. In Fig. 1(e), w2 is set to 1.3, where it can
be observed that the curvature is no longer monotonically decreasing. In Fig. 1(f), p2 is moved within
the su�cient region so that the curvature becomes monotonically decreasing.

Fig. 2 shows the su�cient region of each control point with the same control points as in Fig. 1 (a)
but from a di�erent viewpoint. In each �gure, the regions where ξi > 0 are colored. Therefore, the white
region represents the area where all ξi are negative, meaning that the curvature will be monotonically
decreasing if the control point is placed within this region. Based on the properties of the Bernstein
polynomial, if ξ0 or ξnc (which is ξ7 in this case) de�nes the boundary of the white region, they also
de�ne the boundary of the exact region.

Conclusions:

In this abstract, we proposed a method for visualizing the curvature monotonicity regions of 3D Bézier
curves on a constant-depth plane that passes through the control point of interest. Using a GPU, real-
time visualization of exact and su�cient regions is possible for lower-degree curves. Our approach enables
users to generate curves with monotonically varying curvature more easily since the region of a control
point where the curvature varies monotonically can be visualized. For future work, we plan to focus on
visualizing the curvature monotonicity region of a 3D Bézier curve as a 3D surface.
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Fig. 2: Su�cient regions as the intersection of implicit regions
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