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Introduction:

Three-axis machining is a commonly used method of part production. Here, operation planning involves
stock selection, sequencing of operations, tool selection and toolpath computation. Tool selection is an
important part of operation planning, and involves geometry-based factors and tool, stock material among
many others. The set of suitable tools is selected from the multitude of tools available in a machine shop.

Optimal tool selection has been researched primarily as mathematical optimization. Most works aim
to minimize the total machining time or the net energy consumed of a subset of tools. Despite considerable
work, tool selection is left to the machinist today as researched methods are not available in commercial
software. We present a method in this paper to aid tool selection by computing a non-linear measure
of the machinable volume by a tool, and using it to cluster available tools into subsets relevant to the
operation at hand. The method is general, independent of tool, stock shapes, and can be enhanced to
include other factors pertinent to machining processes.

Prior art:

Prior research into tool selection mainly used optimization algorithms, such as combinatorial ones. In
[9] di�erent combinations of a feasible range of �atend tool sizes, determined from a pocket's geometry,
are explored using a branch-and-bound method. In [13] the `voronoi mountain', the extrusion of the
medial-axis of a polygon, is used to compute planar-pocket toolpaths and the leftover for the next tool
in a sequence, and an optimal sequence found using dynamic programming. This method is extended to
non simply-connected pockets in [12]. The work in [3] uses adaptive slicing of part meshes to compute
accessible volumes of tools, and selects tools from size-based clusters to minimize machining time.

A set of methods �rst computes the tool-accessible areas in planar slices of pockets, then creates a
weighted graph of tool sequences with overlapping accessible areas, and �nds the shortest path (using
Dijkstra's algorithm) for the optimal sequence [5, 6, 11]. In [15], the graph-based method is used for
optimizing milling time across parts considering slices from multiple parts together.

In [4] several meta-heuristic optimization methods for tool selection are compared. In [7], the energy
consumed in �exible manufacturing is optimized by mixed-integer-programming. In [14] the energy
consumption, usage cost for milling tools is optimized; In [2] the average MRR is greedily optimized by
computing the toolpaths from voxel-based o�sets.
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Fig. 1: Examples of input shapes - (left) target part, and (right) �atend tool of 10mm diameter

Most of the reviewed methods cast tool selection as evaluating a graph of tool sequences, and require
toolpath computation which can be expensive. The methods also require features and are restricted to
2.5D ones. The present method estimates the tool-accessible volume discretely on the whole part, and
doesn't require features or toolpath computation, and applies to 2.5-axis, 3-axis milling.

Machinable Volumes - Computation:

The set of all points accessible by the tool in the volume to be removed, without penetrating the part, is
termed as the machinable volume by the tool, indicating the maximum material removable. The set of
non-accessible points in the delta volume represent the leftover by the tool. The tight bounding box of
the target part (see 1(left) for example part) is the stock used. Regions with an `overhang' are considered
inaccessible i.e. `undercut' regions are not machinable. The tool is modelled by the �ute's `envelope',
such as a cylinder for �atend tool, such as in �gure 1(right).

The part shape is enclosed by a uniform grid larger than the bounding box, and grid-cells intercepting
the part surface, called boundary voxels hence, are identi�ed using triangle-box overlap[1]. The cells
between a pair of boundary voxels in a column are classi�ed as interior, as they occur between boundaries.
All other exterior cells are outside, denoting removable material. Part and tool grids are separately
classi�ed, using the same grid-cell size.

The voxel containing the tool tip, is placed one voxel (called a query voxel) above a part boundary
voxel, and the overlap between corresponding tool, part voxel columns is checked (see 2(left)). If no
overlap is found, then the query voxel is accessible. In case of overlap, the height to escape penetration
is calculated as the maximum di�erence between tool and part boundary voxels among all corresponding
voxel columns (see 2(right)). This `safe' height is the Hausdor� distance between input shapes at the
query voxel, considering the machining direction as Z.

All the exterior voxels subsumed by the tool placed at a query voxel are considered machinable. The
union of machinable voxels at all query voxels represents the machinable volume, while the union of
non-accesible voxels represents the leftover volume. The actual volume is the product of voxel count by
the unit cell volume .

A surface representation of voxels is convenient for visualization. The voxel class (leftover/machinable)
is used to assign the fraction of neighbourhood voxels to a given one, as a scalar; this ranges from 0.0
for isolated to 1.0 for enclosed voxels. The iso-surface of the scalar (got by marching cubes) for a very
small value is the leftover volume; the machinable volume is obtained similarly. The leftover volume for
the part in 1(left) with a 10mm �atend tool is shown in �gure 3.

Clustering Of Machinable Volumes:

Clustering is the grouping of semantically common elements from a set of data points; the meaning
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Fig. 2: Schematic depiction of tool placement and interference check - (left) tool interference with target
part when placed above part voxel, (right) calculation of safe height by `lifting' tool along machining
direction.

Fig. 3: Bounding surface (shaded translucent pink) of the leftover volume with a 10mm �atend tool on
the part surface. The surface is the iso-surface for a small value of the scalar assigned to leftover voxels.

depends on the application domain. The clustering exercise can be explored along many aspects such as
method chosen, number of expected clusters, the dimensionality of the `feature' space and so on. While
the number of clusters is a `hyperparameter' depending on the method, the features used are described
in the following.

The machinable volume is a feature used to represent the tool in a part-aware manner. Apart from this,
the average Material Removal Rate (MRR) is used, calculated from linear speed and other parameters
from tool data tables. The machinable volume and MRR are used to estimate machining time, juxtaposes
machinable volume. The combinations of these features are tested for clustering from singleton ones, such
as machinable volume or MRR only, to all three features together.

There are a multitude of clustering techniques developed over the years; Three out of these, namely
the k-Means, mean shift and agglomerative clustering are explored here. K-means is an old, standard
clustering technique, while mean shift and agglomerative clustering are newer, general methods. The
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Fig. 4: Methods for choosing the `hyperparameter' of the number of clusters - (left) `distortion' score for
k in k-Means, (right) dendrogram for agglomerative clustering.

k-Means method initializes and updates the centroids of k clusters iteratively. The hyperparameter k is
chosen using distortion or silhouette scores usually; presently, the distortion score (see �gure 4(left)) is
used as it yields distinct `elbows'. Mean shift clustering repeatedly updates centroids of regions, and as
such obtains the clusters.

In agglomerative clustering, clusters are formed by progressively merging atomic clusters into larger
ones. A dendrogram, a tree-like visualization of merged clusters, (see �gure 4(right)) is inspected to
decide the number of clusters. The merging or linking is based on a `distance' measure; presently `ward'
linking is used.

Results and Discussion:

The clustering methods were experimented on three parts, considering 17 �atend tools sized 2mm to 52
mm. The python packages scikit-learn ([10]) and matplotlib ([8]) were used for clustering and plotting
respectively.

For the part shown in �gure 1(left), k was chosen as 5 for both agglomerative and k-Means using
distortion score and dendrograms respectively. The results with all three features are discussed for
brevity; the results with k-Means are shown in �gure 5. The �ve clusters obtained were - one with tools
<10mm, two for those 10<25mm and two for those >25mm with both the k-Means and agglomerative
methods. The mean-shift method identi�ed three clusters - <20mm, between 20 and 30mm and >30mm.

The other parts also showed results agreeing with the expected number of tool groups for the given
part shape. The clusters from mean shift were similar across all three parts, while agglomerative and
k-Means complied with each other for each part.

Some of the singleton features, such as machining time alone, led to di�erent clustering than others.
This could mean that, by itself, machining time does not distinguish tools well. The clustering results
agreeing with expected grouping of tools would mean that the method is generally applicable; for example,
three distinct groups were obtained for a part with three nested pockets. Tools which cannot machine
any volume on a given part were also identi�ed as having 0 volume, and separated by the clustering,
helping eliminate such tools quickly from consideration.

Conclusions:

The method of computation of machinable volume seems useful and distinctive for clustering. The
machinable volume is general. The geometric operations are independent, and thus parallelizable. The
clustering using features like machinable volume resulted in intuitive grouping of tools. A combination,
rather than individual, of features seems more suitable for clustering as they represent di�erent machining
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Fig. 5: Clusters identi�ed for the example part with k-Means method seeking 5 clusters, with all three
features used to represent the tool.

aspects. Agglomerative clustering seems more suitable, being visual and interpretable,
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