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Introduction:

The remarkable success of convolutional neural networks (CNNs) on long standing problems in computer
vision has led to the recent resurgence of interest in deep neural networks and their applications in other
domains. CNNs can progressively learn discriminative hierarchical features, thus capturing the underlying
structure of the data very e�ectively, and giving state-of-the-art results on problems in many domains.

It is however di�cult to extend CNNs to 3D data. CNNs have been applied to rendered 2D projections
of 3D data for 3D object classi�cation [7]. 3D CNNs have been used with voxelized 3D data and octrees
for shape analysis and retrieval [9]. CNNs have also been trained on small patches sampled from a mesh
surface and used for in-painting meshes [6]. Points from 3D point clouds have been embedded into high-
dimensional spaces [5] and high-dimensional feature descriptors of mesh vertices have been learned using
graph-based methods [3][4]. However, the lack of a natural orientation and ordering of point data in 3D
thwart e�orts towards e�ectively leveraging these deep learning-based techniques. For a comprehensive
survey of di�erent methods for encoding 3D data for use with deep neural networks see [1].

In this paper we describe a simple and easy to implement method for discretely encoding partial point
neighborhoods for direct input to traditional CNNs. Our encoding method captures and preserves most
of the structural information present in a point neighborhood. We show the usefulness of this technique
for accurately predicting point coordinates and other properties. In particular, we train a CNN model
with our encoding and show its e�ectiveness in patching holes in meshes.

Background:

The use of deep learning methods in 3D have been impeded by issues related to the nature of 3D CAD
data. One-dimensional time-series data and 2D image data both have strong structural properties and
natural orientations that can be leveraged by CNNs and recurrent neural networks (RNNs). On the other
extreme, with high-dimensional data, we hope that the underlying structure, is discovered automatically
by a deep enough neural network. 3D CAD data sits uncomfortably on the boundary between these.

3D mesh and point clouds have enough structure that it seems important to use neural network
models like CNNs that explicitly leverage this underlying structure without having to learn it from a
large number of samples. However, there are enough degrees of freedom in 3D, particularly in how
the 3D points are oriented and ordered, that it becomes di�cult to normalize the data for use with such
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networks. Completely abandoning the structure of the 3D data, on the other hand, restricts its usefulness
to global inference tasks such as object recognition and classi�cation.

Every approach to deep learning in 3D has its own entailing issues. 3D CNNs on voxelized data are
both memory and compute intensive. Voxelization also introduces surface inaccuracies thus precluding
accurate prediction of local surface properties. Techniques where the point data is embedded in a high-
dimensional space and then aggregated for pose and order invariance also cannot be easily extended to
local estimation tasks. Projection and patch-based methods are not always very accurate, and graph-
based methods haven't yet been investigated for local interpolation tasks.

Our method is inspired and integrates ideas from graph-based [3][4][2] and patch-based methods [6].
However, our method works directly with untransformed point clouds and is comparatively simple to
implement. Our method neither requires creating a height map as in patch-based methods, and nor does
it require conversion to polar coordinates or any special neural network machinery as in many graph-
based methods. We encode the point neighborhood as a layered 2D image containing raw coordinates
and properties which can be directly used to train a standard CNN.

We illustrate our method in the context of patching holes on smooth surfaces, but the method can
be used to predict and interpolate other properties of point clouds and meshes. Our broad approach for
patching holes is based on the advancing front method described in [8], but instead of using moving least
squares (MLS) as in [8] we estimate the points using a CNN.

Fig. 1: Left: Neighborhood points grouped into rings with linearly increasing radii; Right: Non-linearly
increasing ring radii for enclosing an equal number of points within each ring annulus.

Encoding Partial Neighborhoods:

We describe a method for discrete encoding of partial point cloud neighborhoods. The encoding method
can work with other 3D formats. Points clouds however represent a common denominator for 3D data, and
are also convenient for illustrating our method. We therefore assume that the support faces surrounding
the hole boundary can easily be approximated by a uniformly distributed point cloud and that such
an approximation is available in a data structure where nearest neighbor queries can also be performed
e�ciently.

In an advancing front technique, the hole is patched by progressively interpolating from the boundary
and towards the interior of the hole. The neighborhood of a query point on the advancing front of the
hole boundary then typically looks like that shown in Fig. 1, where the query point is colored red,
the neighboring points are colored purple, and the hole boundary indicated with the dashed curve. As
the advancing front grows and the hole correspondingly contracts in size the neighboring points tend to
surround the query point more completely on all sides.

For encoding a partial neighborhood, we �rst identify the points in a su�ciently large neighborhood
of the query point. These neighboring points are then grouped into several rings based on their distance
from the query point (see Fig. 1). In our experiments the consecutive ring radii are linearly increasing

Proceedings of CAD'22, Beijing, China, July 11-13, 2022, 61-65
© 2022 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


63

Fig. 2: Left: Point distance computation which gives a negative value; Right: Positive point distance
result, also showing the sorted point order for the points in the ring.

multiples of the point cloud resolution r (that is, r is the mean distance between two neighboring points
in the point cloud). However, for other problems the ring radii may be di�erently determined.

The point encodings described in [3][4][2] are not rotation invariant. In general, it is impossible to
uniquely order a 360◦ neighborhood around a point. However, partial neighborhoods can be ordered
consistently. We �rst select a random point Pr from the ring. Then for each of the rest of the points
Pi in the ring, we compute the cross product Ci = (Pi − Q) × (Pr − Q). Then the dot product di =
(Pi −Q) · (Pr −Q)× sign(N ·Ci) gives us the signed distance of the rest of the points Pi from the point
Pr based on which the points inside a particular ring can be ordered. Note that here Q is an estimation
of the query point and the N the estimated normal at this point. The computation is visually illustrated
in Fig. 2.

Fig. 3: Left: Ordered points in each ring; Right: Ordered points encoded as an image by oversampling
the points to �ll the columns in the image.

With the points in each ring ordered, we next oversample the data in each ring into �xed sized vectors
which are then stacked to form the rows of a 2D image. The 2D image has one more row than the number
of rings, each of the top rows corresponding to each ring with an additional bottom row for the query
point. The number of columns in the image is set to the number of points in the outermost ring, although
a larger or a smaller number can be used depending on the resolution of the point cloud. Each of the
smaller inner rings will therefore contain fewer points than are required to �ll the image rows. The points
in the rings must therefore be oversampled while preserving their order to arti�cially stretch the data.
This process is illustrated in Fig. 3.

Oversampling the ordered point data in the partial neighborhoods to create 2D images allows us
to directly use standard CNN architectures and models without having to invent special convolutional
kernels and other neural network machinery. Such a 2D image representation also preserves much of the
structure present in both the circular and radial directions around the query point. The only structural
information loss is due to the nature of the point distribution inherent in the point cloud approximation
of the neighborhood which in many cases may not be uniform with respect to our discretization scheme.
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Fig. 4: CNN network architecture for 2D images of size 8× 24

The exact data that should be stored in these 2D images will depend on the type of point property
to be estimated. Here some creativity will often be required and some inductive bias must necessarily
creep in before the CNN model can learn from the data and interpolate well. We tried several input
data con�gurations and combinations before we found the set of data that works reasonably well for
interpolating point coordinates. Instead of directly predicting point coordinates, we predict the point
normal and pivot the query point to align its normal with the predicted normal. As input to the network
we use the point normals and the relative point coordinates of the neighborhood points, in addition to
the absolute point coordinates.

CNN model architecture:

Once the input data has been converted to 2D images standard CNN model architectures can be used for
training and prediction. For hole patching we use a simple CNN with 5 convolutional layers with 3 × 3
�lters followed by 5 fully connected layers. Our input is a set of 9-layered 2D images, each 8× 24 in size
(7 + 1 = 8 rings each containing 24 point data). The small size of the input image limits the number of
convolution layers we can use without extra padding in each convolution step. The architecture we use is
illustrated in the Fig. 4. Note the lack of any max-pooling or normalization layers since here our 8× 24
images are possibly too small to derive any bene�ts from such layers.

Results:

Fig. 5 show some results of patching meshes using our CNN model. One can see slight undulations on the
patched surface which can be smoothened out in a post-processing step. The result on the right shows a
hole spanning a faceted surface where the connecting edges have been �lleted. These cases can't easily
be patched using traditional methods that locally �t smooth surfaces. A CNN model, on the other hand,
can learn much larger regions of the model during training, and can memorize the varying underlying
structure of a non-smooth surface. In fact, the more faceted and noisy the surface the better the CNN
model is likely to perform compared to traditional methods which are designed mainly for patching
smooth surfaces. This suggests that traditional and deep learning-based techniques are complementary
in nature and could possibly be used together for patching di�erent regions of a large complicated mesh,
like those acquired from 3D scanning methods.

Conclusions:

In this paper we describe a simple and easy to implement method for encoding partial point neighborhoods
for use with CNNs and other deep learning methods. The encoding allows us to capture the local structural
information without the loss incurred due to aggregation required for orientation and order invariance
in other techniques. Instead of full rectangular or circular patches we suggest sampling partial patches
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Fig. 5: Some hole patching results using CNNs. The �rst image shows the mesh with the hole and the
second one shows the patched result.

from the mesh to train a neural network model. Choosing a partial neighborhood allows us to order the
points in the neighborhood consistently. The method is designed to predict and interpolate local mesh
properties, and can be adapted for use with di�erent deep learning models for other tasks.
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