
339

Title:
CAD Refactoring and the Art of Computer Aided Design Model Maintenance

Authors:
Peter Rosso, peter.rosso@bristol.ac.uk, University of Bristol, UK
James Gopsill, james.gopsill@bristol.ac.uk, University of Bristol, UK

and Centre for Modelling and Simulation, UK
Stuart Burgess, stuart.burgess@bristol.ac.uk, University of Bristol, UK
Ben Hicks, ben.hicks@bristol.ac.uk, University of Bristol, UK

Keywords:
Computer Aided Design (CAD), Editability, Graph Representations, Technical Debt, Refactoring

DOI: 10.14733/cadconfP.2022.339-343

Introduction:

Solid modelling is a common way to communicate and store geometric information. Solid models allow
drafters to abstract complex constructs enabling them to be better understood and shared. Leveraging
the computer-based nature of models a�ords continuous improvement and re�nement of models via
version control and the ability to store the history of a model's evolution. The abstractions also support
the use and reuse of part geometry resulting in more e�cient, less error-prone and compressed product
development cycles [9, 12]. However, with particularly long-life products, solid modelling still poses
challenges for the long-term management of product data (among which geometry data). Kasik et al. [5]
discusses a range of challenges for which two underlying themes of interoperability and reuse are evident.

In addition to the two longer-term underlying themes, the type of abstraction applied by the engineer
during the initial design of the CAD model will also impact current activities. For example, artefacts, such
as intersections between surface geometry, can cause issue in the subsequent generation of Computer Aided
Manufacturing (CAM) code and/or meshes for simulation. Given that geometry may be constructed with
di�erent design intent [7], it is important to understand which construction can be reused at a lesser cost.
A consequence will be alleviating the drafter of further cognitive load, so that the drafter can continue to
design in the way that works best for them - or they believe works best. The subject of changing structure
of a system/code base without a�ecting its external behaviour is of great interest in programming and
is referred to as refactoring. This �eld also cites the need for refactoring to simplify source code for
long-term maintenance and support, providing underlying performance enhancements introduced by new
techniques and copying with the growing complexity of a project. All of which are analogous to the issues
and aims of engineers/engineering management.

Given the parallels in both the problem and solution, the authors propose refactoring as an approach
to re-structure the relationships between design entities in a CAD model. The following sections discuss
relevant literature in CAD, Technical Debt, Refactoring, and Graph Representation which provide the
foundations for CAD refactoring. Throughout the sections the same artefact is represented in the context
of the topic discussed.

Proceedings of CAD'22, Beijing, China, July 11-13, 2022, 339-343
© 2022 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


340

Fig. 1: BRep and CSG Model Representations

CAD:

Solid modelling continues to evolve, adopting di�erent representations to match engineering needs
and growing technological capabilities in order to include as many useful details as possible in the chosen
digital representation of an artefact. The most common CAD representations are evolutions of Boundary
Representation, Constructive Solid Geometry and Feature Based representations - Fig.1. �A Boundary
Representation (BRep) of an object is a geometric and topological description of its boundaries. The
object boundary is segmented into a �nite number of bounded subsets, called faces. A face is represented
in a BRep by its bounding edges and vertices' [1]. Constructive Solid Geometry (CSG) de�nes a family of
schemes for representing solids as Boolean combinations of prede�ned volumetric primitives [11]. On the
other hand, Feature Based (FB) representations depict a part or an assembly in terms of its constituent
features. FB models are created by organising the constituent features in a structure that expresses the
inter-relationships [4]. FB representations also allow the inclusion of Design intent in a CAD model.
Design intent encapsulates su�cient knowledge regarding the manner in which the drafter generated the
model to permit it to be modi�ed by the original constructional procedure [10]. Rosso et al. [7] analysed
the variability in design intent and CAD model building process which leads to the conclusion that the
di�erence in structure might lead to �les which are more or less editable. The accumulation of less ed-
itable �les leads to an accumulation of what is referred to as Technical Debt that needs to managed by
a engineering organisation.

Technical Debt:

Technical Debt (TD) is the dept that accrues when you knowingly or unknowingly make the wrong or
non-optimal design decision [8]. TD is either repaid or leads to technical bankruptcy. Cunningham [2],
talking about software development, introduces the metaphor of "debt" in the context of early shipping,
where code at lower quality might be shipped to meet deadlines. Going into dept is a trade-o� for faster
growth and development. Short term solutions or quick responses to growing problems leads to non
optimal solutions which are likely to lead to a growth in TD. TD can be observed across engineering from
drafting, CAD, CAM, simulations and reporting. While in code the idea of smells identi�es patterns that
can be symptoms of TD, in CAD there are CAD smells [6]. Fig.2 portrays alternative constructions of
the same artefact. While Fig.2(a) might be using too many sketches, Fig.2(b) and (c) o�er alternative
constructions using less sketches, by either condensing them, or using mirroring. Good organisation of
code promotes good user behaviour by incentivising reusable and easily editable elements[3], seemingly

Proceedings of CAD'22, Beijing, China, July 11-13, 2022, 339-343
© 2022 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


341

Fig. 2: Artefact modelled with di�erent design intent.

Fig. 3: Graph Representation of the example �le for construction (a) and (b) in Fig.2

the same could be applicable to CAD given it's simiilarities to OOD [6]. It is also important to remember
that poor organisation encourages bad user behaviour by either: disincentivising reuse, or by inciting
�quick and dirty� solutions. In programming this problems is addressed using refactoring techniques.

Refactoring:

Refactoring is a form of restructuring which constitutes a change in the internal structure (to make it
easier to understand and cheaper to modify, for example) without changing its observable behaviour [3].
Refactoring is performed in an incremental process that changes the structure of a model in steps. After
each step, tests are performed to verify the observable behaviour has not changed. Refactoring covers a
broad range of methods that act as treatments for di�erent smells of poor coding practice. Smells can
be classi�ed in di�erent groups that can be addressed individually and / or collectively [8] leading to a
association between a smell and a correspondent refactoring method. A model can exhibit a combination
of smells, and consequentially need a series of refactoring methods applied to it, verifying the external
behaviour is the same at each step. While the relationship between elements in code is explicit, CAD has
some implicit relationship which, at times, the drafter does not consider. A graph representation enables
the visualisation of both implicit and explicit relationships.

Proceedings of CAD'22, Beijing, China, July 11-13, 2022, 339-343
© 2022 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


342

Fig. 4: Refactoring of construction (a) (see Fig.2a) to construction (b) (see Fig.2b)

Graph Representations:

A graph is de�ned as set of points, called nodes, joined by lines, called edges; each edge joins exactly two
nodes. Graph representations have been used in depicting and addressing a variety of problems where
there is a large degree of connectivity between entities. However, the connectivity often leads to increased
computational complexity and it is only recently that advances in computation have enabled the deploy-
ment/production use of graph databases.Hypergraph and/or Typed-Attributed graphs are some of these
representations that allow the embedding of more complex relationships between entities. A CAD model
relies on a dense network of relationships of di�erent types across di�erent entities. An hypergraph struc-
ture will be able to encapsulate all of these relationships within the same representation. Representing
relevant information in a graph model enables the user to utilise tools such as graph morphism, and to
consider relationship across multiple representations of the same CAD model. At its heart, refactoring is a
horizontal, exogenous transformation which can be applied to graphs where there is su�cient information
to con�rm that the CAD model before and after the process is still the same.

Refactoring with graph representations:

The methods o�ered by refactoring vary in complexity and in what entities they can move, merge, sepa-
rate, etc. Simpler methods can be applied manually on the model, while more complex ones which need
access to a larger number of variables can be implemented programmatically using graph transformations.
Throughout this paper, the same simple model was presented using di�erent representations Fig.1 and
showing di�erent design intent Fig.2. The graph representation in Fig.3 shows two di�erent graphs of the
same artefact; it is possible to move between these two representation using appropriate graph morphisms
guided by pertinent constraints. Refactoring preserves observable behaviour, which is the behaviour that
the user is interested in and impacts the system's output. This idea allows for changes in characteristics
such as performance [3]. The observable behaviour of a CAD model relevant for a drafter and in this
context it's the validity of the model in representing the associated artefact. It is possible to ensure this
by maintaining the BRep for the �le, only changing the design intent. The constraint of representing the
same artefact is analogous to the constraint set in refactoring: "no change in external behaviour". Fig.4
shows two graphs that are the are associated with the same artefact. These two models are associated
with the constructions in Fig.2 (a) and (b). The graph is able to provide su�cient information regarding
the relationship of di�erent elements in the boundary representation and design intent to refactor the
model construction tree. Graph representations can bring all of these relationship on the same level of
abstraction aiding more complex refactoring using existing methodologies.

Proceedings of CAD'22, Beijing, China, July 11-13, 2022, 339-343
© 2022 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


343

Conclusions and further work:

This paper introduces the use of Refactoring for CAD models. Rosso et al. [6] discusses the parallel
between CAD and OOD, consequentially some of the tools and methodologies in addressing TD in OOD
could be tested in CAD to favour greater editability [7] and or interoperable. Given the large number of
variable ranging from context of use, to user behaviour, CAD refactoring, at its early stages, is likely to
become a tool to aid the drafters in improving their designs making them more reusable in the future. In
future work the author hope to propose CAD refactoring methodologies in more detail and to study their
e�ects on the editability of CAD models against other alternative constructions. The value of reusable
CAD models goes beyond the resources saved in recreate another model, but as model are tighly coupled
with product data that are leveraged throughout the product life cycle.

References:

[1] Bertolotto, M. 'Geometric Modelling and Spatial Reasoning'. In Arti�cial Vi-
sion: Image Description, Recognition, and Communication, 107-34. Elsevier, 1997.
https://doi.org/10.1016/b978-012444816-2/50011-3

[2] Cunningham, Ward. 'The WyCash Portfolio Management System'. In Addendum to the Pro-
ceedings on Object-Oriented Programming Systems, Languages, and Applications (Addendum),
29-30. OOPSLA '92. New York, NY, USA: Association for Computing Machinery, 1992.
https://doi.org/10.1145/157709.157715

[3] Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 2018.

[4] Ho�mann, Christoph M., and Robert Joan-Arinyo. 'Parametric Modeling'.
In Handbook of Computer Aided Geometric Design, 519-41. Elsevier, 2002.
https://doi.org/10.1016/b978-044451104-1/50022-8

[5] Kasik, David J., William Buxton, and David R. Ferguson. 'Ten CAD Challenges'. IEEE Computer
Graphics and Applications 25, no. 2 (1 March 2005): 81-92. https://doi.org/10.1109/MCG.2005.48

[6] Rosso, Peter, James Gopsil, Stuart Burgess, and Ben Hicks. 'Does CAD Smell Like Code? A Map-
ping Between Violation of Computer Science Design Principles and CAD [Manuscript Accepted for
Publication]'. In 17th INTERNATIONAL DESIGN CONFERENCE. CAVTAT, CROATIA, 2022.

[7] Rosso, Peter, James Gopsill, Stuart Burgess, and Ben Hicks. 'Investigating and Characteris-
ing Variability in CAD Modelling and Its Potential Impact on Editability: An Exploratory
Study'. Computer-Aided Design and Applications 18, no. 6 (26 February 2021): 1306-26.
https://doi.org/10.14733/cadaps.2021.1306-1326

[8] Suryanarayana, Girish, Ganesh Samarthyam, and Tushar Sharma. Refactoring for Software Design
Smells:Managing Technical Debt, 2014.

[9] Ulrich, Karl T., and Scott Pearson. 'Assessing the Importance of Design Through Product Archaeol-
ogy'. Management Science 44, no. 3 (1998). https://doi.org/10.1287/mnsc.44.3.352

[10] Ulrich, Karl T., and Scott Pearson. 'Assessing the Importance of Design Through
Product Archaeology'. Management Science 44, no. 3 (1 March 1998): 352-69.
https://doi.org/10.1287/mnsc.44.3.352

[11] Voelcker, Herbert, and Aristides Requicha. 'Constructive Solid Geometry', 1977.

[12] You, Chun Fong, and Yi Lung Tsai. '3D Solid Model Retrieval for Engineering Reuse Based on Local
Feature Correspondence'. International Journal of Advanced Manufacturing Technology 46, no. 5-8
(2010): 649-61. https://doi.org/10.1007/s00170-009-2113-9

Proceedings of CAD'22, Beijing, China, July 11-13, 2022, 339-343
© 2022 CAD Solutions, LLC, http://www.cad-conference.net

https://doi.org/10.1016/b978-012444816-2/50011-3
https://doi.org/10.1145/157709.157715
https://doi.org/10.1016/b978-044451104-1/50022-8
https://doi.org/10.1109/MCG.2005.48
https://doi.org/10.14733/cadaps.2021.1306-1326
https://doi.org/10.1287/mnsc.44.3.352
https://doi.org/10.1287/mnsc.44.3.352
https://doi.org/10.1007/s00170-009-2113-9
http://www.cad-conference.net

