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Introduction:

Our paper presents a general theoretical framework to investigate the quantitative aspects of bound-
ing distance functions. We propose a precision de�nition that quanti�es the accuracy of the min/max
representation of set-theoretic operations [5] in the entire space and demonstrate how the precision and
the geometric con�guration of the arguments determine the accuracy of the resulting approximation. Our
theorems can be applied in an arbitrary geometrical context, e.g., for objects with or without volumes,
implicit curves, non-di�erentiable or non-manifold surfaces, fractals, and any combination of these.

We identify a subset of Hart's signed distance lower bounds [3] called signed distance function estimates
(SDFE) and show that the sphere tracing algorithm retains convergence under set-theoretic union and
intersection operations, a result for which a general derivation has not yet been presented. Most so-called
distance estimates used by the industry and the online creative coding communities such as ShaderToy
are SDFEs, placing no practical restrictions on the applicability of our results. This paper builds upon
the theoretical results of Luo et al. [4], Bálint et al.[1], and Valasek et al. [6].

Preliminaries:

Let us denote the r > 0 neighborhood of an p ∈ R3 point with the Kr(p) :=
{
x ∈ R3

∣∣ d(x,p) < r
}

open set. For any D ⊆ R3 the radius r ≥ 0 closed o�set set from D is de�ned as Kr(D) := {x ∈
R3 | d(x, D) ≤ r}. Similarly, the interior of Kr(D) is denoted as Kr(D) := intKr(D). This equals
{x ∈ R3 | d(x, D) < r} if r > 0. The di�erence compared to the neighboorhood is to allow r = 0 which
opens the set. O�setting is additive Kr1

(
Kr2(D)

)
= Kr1+r2(D) (r1, r2 > 0) due to Theorem 1 from [1].

Note that our de�nition di�ers from the o�set surface de�ned with translations along the normal because
we may not have a normal or a surface. Therefore, the o�set is the neighbourhood, and the o�set surface
is the boundary of that neighbourhood.

Sphere Tracing:

Let us consider surfaces de�ned by an f : R3 → R implicit function, such that the surface is the
{f = 0} := {x ∈ R3 | f(x) = 0} level-set. In this representation, given a ray with s(t) = p+ t · v ∈ R3

with v ∈ R3 unit-length direction and p ∈ origin point, we can de�ne the ray-surface intersection problem
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(a) Sphere tracing takes at most distance sized steps
so that it does not overstep a solution and converges
quickly. The unbounding spheres (orange circles) con-
tain no surface points while each of the green spheres
(circles) do, so f is an SDFE.

In : ppp,vvv ∈ R3, ‖vvv‖2 = 1 ray, f : R3 → R
distance function

Out: t ∈ [0,+∞) distance traveled along
the ray

t := 0; i := 0;
for i < imax and f(p+ t · v) not too small;
i := i+ 1 do
t := t+ f(p+ t · v)

end

(b) Basic sphere tracing adapted from [3].

Fig. 1: Sphere tracing visualized in 2D (a) is a practical algorithm (b) for implicit surface rendering.

as �nding the smallest root of f(s(t)) for t > 0. Let us de�ne the distance operator D : P(R3) \ {∅} →
C(R3, [0,+∞)) as DA(p) := d(p, A) := infa∈A ‖p − a‖2 (∅ 6= A ⊆ R3,p ∈ R3), where C(R3, [0,+∞))
denotes the set of continuous functions from R3 to [0,+∞), and P(R3) is the power set of R3. This
operator denotes the implicit distance function representation for any set of points in space, including
curves and surfaces. Luo et al. investigate the singed distance operator in more detail in their paper [4].

De�nition 1. f : R3 → R is a distance function (DF) if f = D{f=0}.

Considering that for any p ∈ R3 point, the surface is at least f(p) distance away, meaning that
we can take this distance-sized step along the ray without overstepping a solution. Sphere tracing in
Algorithm 1b iteratively takes these steps along the ray.

Signed Distance Functions:

De�nition 2 (SDF). If f : R3 → R function is continuous and |f | is a distance function, then f is a
signed distance function.

Here, the distance values of the function are augmented with a sign. From the perspective of the
representation, this means that {f < 0} := {x ∈ R3 | f(x) < 0} is the "inside" and the {f > 0} = {−f <
0} is the "outside" of the geometry. In this paper, we mean inside and outside as such, and the argument
object will mean the set {f ≤ 0} = {f < 0} ∪ {f = 0}. For example, R3 3 p 7→ ‖p‖2 − 1 ∈ [−1,+∞) is
a signed distance function of the closed unit sphere. Note that an SDF may not de�ne an inside region,
only the surface, because distance functions are SDFs as well.

Continuity in the de�nition is required to ensure that the SDFs are Bolzano functions, i.e. the signs
do not change without crossing the surface. However, this does not imply that the signs have to change
at {f = 0}, so distance functions are SDFs without interior ({f < 0} = ∅). Moreover, the de�nition
implies that {f = 0} 6= ∅. Mathematically, the exact distance representations are important, and there
are extensive studies that investigate signed distance functions [1], boundary projections [6], or both [4].
Practically, however, exact SDFs are infeasible for anything but the most trivial scenes.

A common way of obtaining a distance estimate from an implicit function is to divide it by one of
its Lipschitz constants. We can generalize this to functions that are not Lipschitz continuous by using a
more general quantity than the Lipschitz constants. To identify the necessary properties of this quantity,
we derive an alternative de�nition to Hart's signed distance lower bounds from [3]. First, let us de�ne
the set of Lipschitz constants for any f : R3 → R function as

Lip f :=
{
L > 0

∣∣∣ ∀x,y ∈ R3 : |f(x)− f(y)| ≤ L · ‖x− y‖2
}
. (2.1)
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Note that smallest Lipschitz constant of an SDF is 1, that is inf Lip f = minLip f = 1.

De�nition 3 (Closer factor). For any f : R3 → R function, we de�ne the set of closer factors as

C f :=
{
Q > 0

∣∣∣ |f | ≤ Q ·D{f=0}

}
⊆ (0,∞)

We interpret the above less symbol element-wise. This means that the C f is the set of positive
numbers that scale the true distance function such that it is still larger than |f | at every point. C f can
be derived from the Lipschitz constant de�nition by restricting y in Equation 2.1 such that y ∈ {f = 0}.
Note that the Lipschitz continuity (Lip f 6= ∅) is a much stronger requirement then having a non-empty
closer factor set, i.e. C f 6= ∅.

Then, we can de�ne signed distance lower bounds consistently with Hart [3] if f : R3 → R is such
that 1 ∈ C f and sgn ◦f ∈ C({f 6= 0}). The original de�nition only had the 1 ∈ C f condition, which
ensures that f is a lower bound to the actual distance. We also stipulate that sgn ◦f ∈ C({f 6= 0}),
so that the resulting function only changes sign on the surface. Hence, the this condition guarantees
inside {sgn ◦f = −1} and outside {sgn ◦f = 1} makes sense in relation to the surface without restricting
geometric properties. As Hart noted in [3], we can generate a signed distance lower bound by dividing
any Lipschitz continuous function with any of its Lipschitz constants. The same is true for closer factors,
but the function need not be Lipschitz continuous.

Signed Distance Function Estimate:

This section introduces SDFEs, a set of signed distance bounds that possess convergence guarantees
for algorithms such as sphere tracing by bounding their worst case slowdown. To quantify this, we de�ne

De�nition 4 (Farther factors). For any f : R3 → R, let the set of farther factors be

F f :=
{
q > 0

∣∣∣ |f | ≥ q ·D{f=0}

}
⊆ (0,+∞) .

Note that compared to closer factors the relation sign is �ipped meaning f is increasing at least q
times more further away from the surface than the distance does. The F f set is unrelated to Lipschitz

continuity as it bounds the argument function from below with the actual distance.

De�nition 5 (SDFE). The function f : R3 → R is a signed distance function estimate if F f 6= ∅,
1 ∈ C f , and sgn ◦f ∈ C({f 6= 0})

Note that SDFs are SDFEs as well, since {1} = F f ∩ C f = (0, 1] ∩ [1,∞). We call any q ∈ F f
a precision of f since 0 < q ≤ 1 quanti�es the di�erence between an exact SDF and our estimate as
demonstrated by Figure 2. Precision is also the maximum slowdown of the sphere tracing algorithm.

Set-operations:

For all theorems that follow, let f and g denote signed distance function estimates (SDFEs) with
precisions qf ∈ F f and qg ∈ F g, respectively. Let us also use the notational shorthands f−0 := {f ≤ 0}
and f− := {f < 0}. The f+0 and f+ symbols are analogous. Minimum and maximum on functions are
to be interpreted element-wise.

The most important theorem in the �eld comes from [3] that states how set-operations can be applied
to objects de�ned by SDFs. Adapting our notation, his theorem states that if f, g : R3 → R are such that
1 ∈ C f and 1 ∈ C g, then 1 ∈ Cmin(f, g) and 1 ∈ Cmax(f, g), and therefore:

Union: h = min(f, g) is a signed distance lower bound of the f−0 ∪ g
−
0 object.

Intersection: h = max(f, g) is a signed distance lower bound of f−0 ∩ g
−
0 .
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Fig. 2: Left: SDFE obtained through min and max set operations using transformations of a half-plane
(line) and a circle primitive. The ratio of the SDFE (left) and the exact SDF (middle) is displayed on
the right. The right image shows that the precision of the �nal SDFE is around 0.2 at maximum. We
prove that there is a lower bound to the precision and thus a maximum slowdown for sphere tracing.

Di�erence: h = max(f,−g) is a signed distance lower bound of f−0 \ g
−
0 .

Despite the practical robustness, Hart's set theorems do not guarantee sphere tracing convergence, for
example, the lower distance bound set may be empty. Figure 2 demonstrates how precision drops as the
result of the above set operations. Since Hart has proved that h is a signed distance lower bound, we
have to show that F h 6= ∅.

Set-Contact Smoothness:

Our goal is to estimate the precision of the resulting h = max(f, g) function close to the exterior of
the surface {h = 0} without any geometric assumptions. However, the geometry of the intersection plays
a vital role in the resulting precision. For this reason, We de�ne the set-contact smoothness modulus as
a function for F,G ⊆ R3 sets as

σF,G(δ) := min

(
δ, d
(
F \ K δ

2
(F ∩G), G \ K δ

2
(F ∩G)

))
(δ ≥ 0) .

For example, if F and G are two perpendicular intersecting lines, σF,G(δ) =
√
2
2 δ. In general, σF,G

quanti�es how smoothly F and G melds on various scales.

Proposition 1 (Properties). Let F,G ⊆ R3, then (i) σF,G(0) = 0, (ii) σF,G is a monotonically increasing
function, (iii) σF,G(δ) ≤ δ, (iv) If F and G are closed sets, then ∀ δ > 0 : σF,G(δ) 6= 0.

When one of the sets are not connected, the function σ∗F,G(δ) := d
(
F \ δ

2
G, G\ δ

2
F
)

(δ ≥ 0) can have
a discontinuity and retain a higher value until Kδ(F ∩ G) reaches the next component. Therefore, the
min(δ, ·) is used in the equation allows the de�nition to make sense when σ∗F,G is in�nite, and it ensures
that properties (i) through (iv) hold.

Results:

The following theorem gives an almost global bound on the precision of the resulting SDFE.

Theorem 1 (Set operations). Suppose that f and g : R3 → R are SDFEs, and let 0 < δ ≤ diam{f = 0}.
Then, the following set-operations produce an SDFE with the function
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Union h = min(f, g) for the f−0 ∪ g
−
0 set if f+0 is bounded

Intersection h = max(f, g) for the f−0 ∩ g
−
0 set if f−0 is bounded

Di�erence h = max(f,−g) for the f−0 \ g
−
0 set if f−0 is bounded

with the precision
1

4

σ{f=0},{g=0}(δ)

diam{f = 0}
·min(qf , qg) ∈ F h

∣∣∣
R3\Kδ({h=0})

(2.2)

Where diam{f = 0} is the diameter of one of the argument sets meaning that we must assume that it is
bounded. The above theorem directly implies sphere tracing convergence on the resulting representation
for the union, intersection, and di�erence operations. In practice, the convergence speed of the sphere
tracing algorithm depends on the δ 'near-threshold' distance, on the diameter of the smaller object
diam f−0 , and its SDFE bound Kf . The δ appears in sphere tracing implementations as an arbitrarily
small value used for a distance threshold under which the computation is terminated. This way, sphere
tracing stops when the surface is su�ciently approximated, i.e. the error is smaller than a pixel.

Conclusion:

We introduced a subset of signed distance lower bound functions called signed distance function
estimates (SDFE) that have provable precision characteristics. These functions only pose constraints on
the mapping and not on the represented geometry. We showed that sphere tracing retains convergence
on SDFEs under set-theoretic operations. In particular, most so-called distance estimates used by the
industry and online creative coding communities such as ShaderToy are SDFEs; thus the convergence
guarantees derived here also hold for those constructs. These �ndings suggest that sphere tracing CSG
trees composed of SDFEs may be optimized by reordering set-theoretic operations. This is subject to
further research in conjunction with extending our analysis to various blending operations.
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