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Introduction:

Signed distance functions (SDFs) are powerful implicit representations of curves and surfaces. Beyond
encoding volume boundaries as their zero level-set, they also convey global geometric information about
the scene as they map signed distances to all points in space. In real-time applications, their most
common numerical representation is a regular grid of two or three dimensions. In conjunction with an
interpolation method to infer a continuous approximation de�ned on all points of space, these can be
e�ciently evaluated on the GPU such that even the most demanding applications can utilize them [4, 5].

Several authors proposed to use �rst order approximations to the SDF at the samples, e.g. gradients
[3] or plane equations [1]. In this paper, we present a straightforward generalization of this approach
to higher orders and discuss various alternatives to the appropriate �ltering of samples such that the
inferred SDF reconstructs the given higher order derivatives at the samples. Our focus is on applications
in high performance visualizations, as such, we prioritize run-time performance over optimal storage and
restrict sampling topologies in our measurements to regular grids. We also discuss the shortcomings of
this approach as means to decrease storage for complex shapes.

Higher order distance �eld samples:

We denote multi-indices by an α = (α1, .., αn) ∈ Nn tuple. Let x ∈ Rn and f : Rn → R be a su�ciently
smooth function. Then we de�ne the following operations with muli-indices:

|α| = α1 + α2 + · · ·+ αn, α! = α1! · α2! · . . . · αn!,

xα = xα1
1 · x

α2
2 · . . . · xαnn , ∂αf = ∂α1

1 ∂α2
2 . . . ∂αnn f = ∂|α|f

∂x
α1
1 ∂x

α2
2 ...∂xαnn

.

Let f : Rn → R be a function that is sampled at an xi ∈ Rn set of points, i ranging over an appropriate
set of multi-indices. Although our discussion holds for arbitrary spacing of samples, the remainder of this
paper focuses on regular grids. By an order k sample, we refer to an fi(x) : Rn → R n-variate polynomial
of total degree k, i.e. fi(x) =

∑
|α|≤k aαx

α. We consider three types of higher order samples:

1. Taylor expansions about the sample positions: fi(x) =
∑
|α|≤k

∂αf(xi)
α! (x− xi)α

2. Least-squares �t (LSQ) polynomials over regions around sample positions: fi(x) =
∑
|α|≤k ai,α ·xα
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Fig. 1: Error heatmaps of planar signed distance �elds extrapolated from a single order zero (left), order
one (middle), and order two (right) Taylor sample. Larger numbers (yellow) mean higher error.

3. SDF partial derivatives in conjunction with Hermite interpolation: {∂αf(xi)}|α|≤k

Taylor samples can be represented by their coe�cients in an appropriate basis. By choosing one
where evaluation is invariant under barycentric combination, we can leverage GPU hardware �ltering to
optimize queries. Depending on the particular GPU, this may be an essential performance optimization.

In the 1D case, the above invariance means that (1 − λ(x))fi(x) + λ(x)fi+1(x) can be reduced to a
single evaluation after interpolating the coe�cients of fi(x) and fi+1(x). It follows immediately that, for
example, the global monomial basis satis�es this property, that is,

(1− λ(x))
∑
j

ai,jx
j + λ(x)

∑
j

bi,jx
j =

∑
j

(
(1− λ(x))ai,j + λ(x)bi,j

)
xj (2.1)

holds. As long as the data was normalized, this basis was su�cient using IEEE binary32 numbers and
for the sake of convenience, we will use them throughout the paper. Regardless of basis, higher order
Taylor expansions provide better accuracy over an increasing area, as long as the SDF is su�ciently
continuous. Fig. 1. illustrates this for an origin centered circle. There, samples are represented by the
aij ∈ R coe�cients of the polynomials a00, a10x+a01y+a00, and a20x2+a11xy+a02y

2+a10x+a01y+a00
respectively. The sample position is denoted by the red X. The geometry is the origin centered, radius 1
red circle. Blue corresponds to low error, yellow is high error.

LSQ samples are also stored by their coe�cients, however, we compute them as the solution to an
optimization problem. We detail a general framework for such constructs in the next point.

For Hermite reconstruction, partial derivatives may be stored by their coordinates. Note that we only
use derivatives up to the total order of k. That is, for example in the case of �rst order samples in the
plane, we store f(xi), ∂xf(xi), ∂yf(xi) but we do not encode ∂2xyf(xi).

All of the above representations may be made more e�cient by noting that an SDF gradient is of unit
length everywhere where the SDF itself is di�erentiable.

Least squares SDF construction framework:

For every xi sample position of the grid, let us construct a small �ne grid, that collects a number of
distance samples in the neighborhood of xi. Let this �ne grid be sij = xi + [i · ∆a, j · ∆b, k · ∆c]T ,
j = (i, j, k) ∈ {−H, . . . ,H}3, i.e. symmetric about xi and let us denote the collection of �ne grid
distance samples by fij . Let N denote the total number of samples, N = (2H + 1)3. Then the best �t
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Fig. 2: The �rst order grid sample xi (in red) uses distance samples on the �ne grid (in black) to �t a
plane (blue line).

polynomial satis�es the following∑
|α|≤k

aiαs
α
ij ≈ fij , j ∈ {−H, . . . ,H}3 (2.2)

where (ai1, ai2, . . . , aiK), K =
(
k+3
3

)
are the sample coe�cients and fi1, fi2, . . . �ne grid distance samples.

The best �t polyomial can be sought in various norms. For the ease of GPU implementations, we
propose the use of the least-squares (LSQ) optimal �t, as optimization simpli�es to a matrix-vector
multiplication in this case. Moreover, the matrix in question only needs to be computed once. This
follows from two observations. First, the Moore-Penrose pseudoinverse is the least-squares solution to
Eqn. (2.2). If XT

i · Xi is invertible, it can be written as X+
i = (XT

i · Xi)
−1 · XT

i and the optimal
coe�cients are ai = X+

i · fi. Second, we only need to store the X+
O origin centered version of the above

matrix. A �t using X+
O merely translates the origin to the sample position without a�ecting the �t and a

straightforward computation can transform those coe�cients to the world origin. As we are only focusing
on real-time GPU-viable degrees, i.e. up to 3, the condition number of the normal matrices is manageable
with IEEE binary32 formats.

Fig. 2. illustrates the �tting process. This construction may be carried out on any representation
where point-boundary distance queries can be evaluated.

Regardless of the norm chosen, the best �t polynomial converges to the Taylor polynomial as the �ne
grid extent tends to zero. Intuitively speaking, the size of the �ne grid acts as a low pass �lter on the
geometry. In this sense, the �ne grid is a level-of-detail control.

We found that the estimated gradients for �rst order samples are almost always of unit-length. They
only deviate around the cut locus, where the samples collapse to piece-wise constant approximations
consisting of the distance to the boundary. However, this deviation may be particularly large and reduce
the overall precision of the �eld, especially when �ltering is taken into account.

Filtering higher order samples:

Sample �eld queries usually aggregate several samples to construct an approximation to the sampled
function. More generally, �ltering can be formulated as a

∑
j λj(x)fj(x) barycentric combination of

fj(x) samples with some, not necessarily linear, barycentric weighting functions λj(x),
∑
j λj(x) ≡ 1.

For order k samples, the λi(x) barycentric �ltering functions have to be such that they preserve the
higher order derivatives speci�ed by the samples at the sample positions, that is,

∂α
∑
j

λj(xi)fj(xi) = ∂αfi(xi) (∀0 ≤ |α| ≤ k) (2.3)

should hold under the J �ltering footprint, i ∈ J . This can be done by combining univariate Hermite
solutions to the same problem, e�ectively doing Gk blends of the implicit surfaces in the samples.
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Fig. 3: The test models used in our accuracy and performance tests.

Another important aspect of high performance queries is whether the GPU accelerated bi- and trilinear
interpolation units can be used for lookup. This is not the case for Hermite interpolation, however,
higher order tensor-product blends of Taylor and LSQ polynomials may be carried out by perturbing the
fractional part of the query texture coordinates, which was used in our performance tests.

Test results:

Accuracy tests resampled lower resolution (83 to 1283) higher order discrete SDFs (DSDF) to 2573 zero
order ground-truth DSDFs. The vertices were normalized to be zero centered and within [−1, 1]3. We
computed the mean, median, and maximum absolute error metrics between the ground truth and the
upsampled distance �elds. A torus, two procedural geometries (SDF1 and SDF3), and an Armadillo
mesh model were used in the accuracy tests, see Fig. 3.

Tab. 1. shows our total storage percentages such that the higher order �eld with the given �ltering
produces at most the same error as the trilinearly �ltered zero order DSDF. Percentages are relative to
trilinearly �ltered zero order �elds. O1c, O2q, O3s refers to DSDFs of order 1, 2, and 3 with cubic,
quintinc, and septic Hermite blending interpolation. O1F and O2F are tensor tricubic and triquintic
Ferguson-like solutions to �rst and second order Hermite interpolation problems.

mean median max

O1c O1F O2q O2F O3s O1c O1F O2q O2F O3s O1c O1F O2q O2F O3s

T
o
r
u
s 64 105% 7% 19% 8% 13% 98% 3% 8% 2% 4% 21% 14% 31% 19% 31%

128 105% 6% 10% 4% 8% 98% 2% 4% 1% 1% 21% 13% 26% 20% 26%

192 � 4% 7% 3% 5% 108% 2% 2% 0% 1% 21% 14% 25% 17% 21%

A
r
m
a
. 64 139% 65% 114% 67% 105% 139% 41% 125% 53% 119% 98% 50% 53% 41% 61%

128 139% 60% 103% 60% 105% 121% 32% 88% 38% 99% 98% 55% 46% 50% 57%

192 � 50% 96% 53% 97% 119% 25% 78% 31% 89% 79% 39% 37% 34% 42%

S
D
F
1 64 149% 55% 103% 60% 105% 130% 14% 75% 26% 81% 27% 24% 41% 19% 44%

128 149% 45% 88% 50% 93% 98% 6% 28% 7% 31% 41% 20% 41% 14% 26%

192 � 47% 96% 48% 97% 88% 4% 14% 4% 16% 31% 12% 18% 15% 28%

S
D
F
3 64 158% 55% 125% 67% 119% 202% 21% 125% 46% 150% 71% 55% 53% 46% 52%

128 169% 60% 119% 63% 127% 139% 8% 43% 13% 52% 50% 35% 31% 28% 26%

192 � 57% 125% 62% 124% � 6% 24% 6% 26% 47% 57% 28% 29% 24%

Tab. 1: Storage usage compared to trilinearly �ltered order zero �elds with matching accuracy.

The best storage is attained by using Ferguson-Hermite �elds, however, the DSDF order appropriate
blending proved to be close to them in maximum error metrics. Note that as the model complexity
increases, the storage e�ciency decreases. For example, while higher order �elds improve storage on the
torus by 3− 25×, they are less e�cient for the Armadillo and the procedural models. Our hypothesis is
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that this is mainly due to �tting and combining samples from di�erent sides of the cut locus.
Taylor based samples proved to be too local for blending-type interpolation and all the above �gures

used LSQ samples, as they provided better accuracy.
In terms of performance, we considered incorrect �ltering of higher �elds as well, e.g. trilinear �ltering

of O2, due to their prominence in real-time computer graphics. Tab. 2. contains average FPS �gures
over 100 frames, reported in milliseconds. Visually, the second order Ferguson Hermite solution was less
pleasing due to the �atness introduced by the zeroed out partial derivatives and its evaluation cost was
also too high to use beyond order 2.

AMD RX 5700 FP32 NVIDIA 2080 FP32

O0 O1 O2 O3 O0 O1 O2 O3

linear 0.3 0.52 0.92 1.61 0.24 0.74 1.82 3.64

cubic 0.56 0.94 1.64 0.73 1.79 3.7

quintic 0.98 1.68 1.86 3.53

septic 1.69 3.52

FH 1.02 1.94 1.08 2.90

Tab. 2: Average render times (ms) of the Armadillo model at full HD resolution.

Conclusions:

We presented a general framework to study higher order algebraic signed distance �elds and an algorithm
to compute LSQ samples from arbitrary representations that can resolve point-boundary distance queries.
With specialized GPU implementations, these proved to be viable solutions for real-time graphics, how-
ever, their storage gains could be only realized with expensive �ltering. Using too local samples, such as
Taylor expansions or too narrow �ne grids, is not advised with blending. Our experiments suggest that
adapting storage to the cut locus of the model could provide further improvements.
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