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Introduction: 
Structural optimization is a type of optimal design problem in which the shape of a structure is 
determined to minimize or maximize the objective function by using the evaluation characteristics 
such as weight, stiffness, and natural frequency as the objective function and the shape of the 
structure as the design variables. Structural optimization can be roughly classified into three types: 
sizing optimization [2], shape optimization [4], and topological optimization [1], depending on how 
the shape of the structure is represented and what is treated as a design variable.  

In sizing optimization, an optimization problem is formulated using the evaluation characteristics 
of the structure, e.g., weight, stiffness, and maximum stress, as objective functions while the design 
dimensions that define the shape of the structure, e.g., beam length and height, plate thickness, and 
cross-sectional area, as design variables, and mechanical or geometric conditions as constraints, and 
optimization is performed using an optimization algorithm such as steepest descent, GA or PSO. 
Shape optimization derives the optimal shape of a structure using its outer shape as design variables. 
To be more specific, the coordinates of the nodes on the boundary of the finite element model 
representing the initial shape of the structure are used as design variables, and the optimal shape is 
explored by combining the finite element method, sensitivity analysis method, and mathematical 
optimization algorithm. Topology optimization is a method of simultaneously optimizing the shape 
and form of the structure by replacing the problem of finding the optimal shape of the structure with 
the problem of placing materials in a fixed design domain. Each method has its own characteristics, or 
advantages and disadvantages, and is used in different ways depending on the situation. 

In this research, sizing optimization is focused among the three methods. Sizing optimization 
treats the dimensions, which define the shape of the structure, as optimization variables, which is 
similar to the way of defining the shape in general 3D CAD that adopts parametric modeling, and thus 
has a high affinity with 3D CAD. In fact, several commercial 3D CADs [3] provide the function of sizing 
optimization. On the other hand, in sizing optimization, as the number of design variables increases, 
the number of iterations to reach the optimal solution increases rapidly. In order to evaluate the 
objective function and constraint conditions for each iteration and each design proposal, an analysis 
using techniques such as the finite element method is required, and each analysis requires a certain 
amount of time. Therefore, there is a limit to the size of the design problem or the number of design 
variables that can be optimized in a practical amount of computation time. To overcome this 
limitation and to handle more design variables within a practical computation time, an efficient sizing 
optimization method using artificial neural networks is investigated. An artificial neural network, a 
method of machine learning, requires a large amount of training data to train the network, but once 
training is completed, inference can be performed in a small amount of time. In the proposed method, 
networks with the values of the design variables as inputs and the values of the objective function and 
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constraint conditions as outputs are trained in advance using training data collected by using 
commercial FEM software. During the calculation of sizing optimization, the trained networks evaluate 
design proposals instead of FEM. The collection of training data using FEM software takes a lot of time, 
but the time required to evaluate design proposals using the trained networks during sizing 
optimization becomes almost negligible. Therefore, if the number of evaluations of design proposals 
performed until reaching the optimal solution in sizing optimization is greater than the number of 
training data required to train the networks, the total calculation time can be reduced. In order to be 
applicable to more diverse design problems, the proposed method can handle both continuous values 
such as dimensions and discrete values such as the number of ribs. In the case study, the proposed 
method is applied to the optimal design of an aircraft wing. 

Proposed method: 
The proposed method consists of the following four steps: 

Step1: Sampling the design proposals 
Step2: Collection of training data 
Step3: Training the networks 
Step4: Sizing optimization using ANN  

Step 1: Sampling the design proposals 
The design variables for optimization are selected from the dimensions that define the shape of the 
structure to be optimized, their upper and lower limits are determined, and combinations of the values 
of the design variables, or design proposals, are sampled from the design space for the required 
number of training data. In order to sample design alternatives as uniformly as possible from the 
design space, Latin hypercube sampling (LHS) is used. 
Step 2: Collection of training data 
The design proposals sampled in Step 1 are analyzed using FEM software to collect training data. 
Step 3: Training the networks 
The ANN with the values of the design variables as inputs and the values of the objective function and 
constraint conditions as outputs is created and trained using the training data collected in Step 2. 
Step 4: Sizing optimization using ANN 
Sizing optimization is performed by evaluating the design proposal using the networks trained in Step 
3. Any optimization algorithm can be used for sizing optimization, such as the steepest descent, PSO, 
or GA. 

Case study: 
In order to confirm the effectiveness of the proposed method, it is applied to the design of an aircraft 
wing. 

In the case study, the wings of Hawker Tempest, Mitsubishi A6M Zero, and Kawasaki Ki-45 Toryu, 
fighters used in World War II, are used as design targets because of the ease of collecting documents. 
From a structural point of view, an aircraft wing is roughly composed of three elements: ribs, spar, 
and skin. Based on the drawings available in the literature, wing models of these aircraft, which 
consist of three elements, were created. Ribs and spars usually have an I-shaped cross section, but 
they were simplified to a rectangular cross section. All structural elements are modeled by shell 
elements. In actual aircrafts, there are cutouts in these structural elements due to the presence of 
devices inside the wings and moving surfaces such as ailerons and flaps, but these are not considered 
in this case study. Fig. 1 shows the created models. As for design variables, the thickness of the ribs, 
spars, and skins, the length of the ribs, and the number of ribs are treated. For the thickness, as also 
shown in Fig. 1, all the structural elements are divided into 9 groups, and the thickness is configured 
for each group. The range of thicknesses is shown in Tab. 1. For the rib length, the rib length of the 
original fuselage is considered to be 100%, and the rib length is expressed as X% of that length. All ribs 
are divided into 5 groups as shown in Fig. 2 and rib length is configured for each group. The range of 
rib lengths is shown in the Tab. 2. The number of ribs varies from 26 to 29, with 27 as the initial value. 
The total number of design variables is 15: 9 for thickness, 5 for rib length, and 1 for the number of 
ribs. 
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Fig. 1: Wing model and design variables concerning thickness. 
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Fig. 2: Design variables concerning rib length. 

 

 
 

Tab. 1: The range of thicknesses. 

 

 

 

Tab. 2: The range of rib length. 

 

As for the number of training data, in order to discuss the effect of the number of training data on the 
inference accuracy and optimization results, the proposed method was run while varying the number 
of training data from 1000 to 20000. As for the objective function and constraint conditions of sizing 
optimization, the total weight was used as the objective function, while the maximum stress and 
natural frequency were used as constraints. In order to collect these values of the design proposals 
sampled in Step 1, ANSYS was used for modeling and analysis. As for ANN, 3 networks with 15 design 
variables as input and weight, maximum stress, and natural frequency as output respectively were 

Min (mm) Initial (mm) Max (mm)

Skin_root_upper 0.8 1 2

Skin_tip_upper 0.5 1 1.5

Skin_root_lower 0.8 1 2

Skin_tip_lower 0.5 1 1.5

Rib_root 3 8.9 10

Rib_middle 3 8.9 10

Rib_tip 3 8.9 10

Spar_root 30 55.7 60

Spar_tip 10 24.8 25

Rib length1 Rib length2 Rib length3 Rib length4 Rib length5

Max 105% 102% 101% 101% 102%

Min 98% 99% 99% 98% 95%
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created and trained. In order to discuss the effect of network configuration on the inference accuracy 
and optimization results, networks with three or four hidden layers were tested in addition to the 
standard networks with one hidden layer. Similarly, networks with different number of nodes in the 
hidden layers were tested. In training, 70% of the training data was used as training data, 15% as cross-
validation data, and 15% as test data. As for sizing optimization, PSO was used as the optimization 
algorithm. 

 
Results and discussion 
Due to the limitation of the paper, the results of Mitsubishi A6M Zero are shown here as an example. 
Tab. 3 shows the number of hidden layers, the number of nodes in the hidden layers, the number of 
training data, and the average error with the lowest average error for the obtained networks that infer 
maximum stress, natural frequency, and weight. Here, the hidden layer configuration of 50_60_50_5 
means that the network has four hidden layers, and each hidden layer has 50, 60, 50, and 5 nodes. Fig. 
3 shows the effect of the number of training data on mean error of the networks that infer maximum 
tress. By increasing the number of training data, the average error decreases. The required number of 
training data depends on how much accuracy is required. Next, the optimal solution derived using the 
learned ANN and PSO and the analytical results of the optimal solution using ANSYS are shown in Tab. 
4. This result shows that the weight and natural frequency can be inferred with great accuracy, but the 
maximum stress has an error of several percent in the optimal solution. It is dangerous if the 
maximum stress is inferred to be lower than it should be. 

 

  

 

Tab. 3: Obtained ANNs that infer maximum stress, natural frequency, and weight. 
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Fig. 3: Effect of the number of training data on mean error. 

 

 

 

Tab. 4: Result of sizing optimization. 

Configuration of

hidden layer

Training

data

Training

time (s)

Average

error (%)

Maximum stress 50_60_50_5 14000 844 0.79

Natural frequency 30_40_30 7000 412 0.73

Weight 20_30_20_10 11000 374 0.0046

The number

of inference

Maximum

stress (Mpa) Weight (Kg)

Maximum

stress (Mpa) Weight (Kg)

Maximum

stress (%) Weight (%)

Natural

frequency (%)

105016 6.1 786.6 6.33 786.7 3.62 0.0107 0.58

ANN FEM Error
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As for the calculation time, 14000 training data were used to train the network to infer the maximum 
stress, while 100000 inferences were made to reach the optimal solution in sizing optimization using 
ANN. The collection of a training data, in other words, the analysis of a design proposal using ANSYS, 
takes an average of 144 seconds. This means that it takes about 560 hours to collect 14,000 training 
data. On the other hand, training the networks and optimization using the learned networks and PSO 
both require only a few minutes, thus the time required is almost negligible. Even in conventional 
sizing optimization, most of the computational time is occupied by the analysis executed during the 
iterative computation. If sizing optimization was performed without ANN and 100000 analyses were 
performed during that process, the sizing optimization would take 4000 hours.  

To summarize, it was found that while the proposed method succeeds in significantly improving 
the efficiency of sizing optimization, inference errors are unavoidable and thus this needs to be to be 
further investigated.  

Conclusion: 
In this study, an efficient sizing optimization method using artificial neural networks is investigated in 
order to handle more design variables within a practical computation time. In the proposed method, in 
order to reduce the calculation time required for the analysis for evaluating design alternatives 
performed during sizing optimization, the networks for inferring the objective function and constraint 
conditions from the design variables are trained in advance, and the learned networks are used during 
sizing optimization. A large amount of training data is required to train the network, but as shown in 
the case study, if the number of evaluations of design proposals performed during sizing optimization 
is larger than the number of required training data, the total calculation time can be reduced. It was 
also found that if the networks used to the sizing optimization for the similar products were available, 
the computational efficiency could be further improved by fine tuning.  
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