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Introduction: 
Reverse Engineering (RE) is an activity which consists in digitizing a real part in order to create a 
numerical or virtual model of it [8]. It is conducted on components that do not have any Computer Aided 
Design (CAD) model, or only a semantically poor 3D representation, such as a mesh or a fixed resulting 
body. Main industrial applications for RE consist in CAD model re-design from digitized data for new 
product development or downward application such as Computer aided Manufacturing or simulation.  

Aeronautical components present several challenges for RE activities, such as complex structures 
and shapes, large data volumes, and a high need of precision in CAD models rebuilt.  Moreover, semantic 
segmentation (i.e., decomposition of a mesh into meaningful regions) of complex shapes that represent 
freeform surfaces with aerodynamic properties remains an area of research.       
       This paper presents a study on semantic segmentation for complex aeronautical Parts. Machine 
Learning and Deep-learning model-based segmentation methods are evaluated on a set of real aircraft 
engine parts.   

State in the art in Reverse Engineering:  

THE RE PROCESS 
According to [5], most common RE frameworks can be decomposed in following steps : (a) Digitizing; (b) 
Pre-Processing; (c) Segmentation; (d) Modelling. 
       Digitizing a real object consists in creating a 3D virtual representation of it (see [2] for existing 
methods). The result usually takes the form of a 3D mesh or a point cloud (list of point coordinates). It 
should be noted that, for some RE needs, 3D data may come directly from tessellated CAD files and not 
from real world components. 
       Pre-Processing steps like decimation of the number of acquired points, mesh generation, surface 
smoothing, etc.,…, are operations available in most acquisition software.  
       Segmentation is the process of sub-dividing a 3D mesh into distinct regions called segments. 
Segmentation is called semantic when each identified region can be easily associated with a construction 
operation or a specific surface [5]. Complete surveys can be found in [10], [14] and [18].  
       Modelling operations are used to generate 3D models compatible with CAD-CAM applications. 
Freeform approaches are commonly distinguished from feature-based methods. The former is an explicit 
modelling approach, which consist in describing a solid by its surfaces, and usually result in a “frozen” 
or “dead” solid. The term features is widely and differently used in the literature for implicit modelling 
which seeks to recover a parametric and semantic model by using a procedural approach with sequences 
of constructions operations with parenting relations. Here, a feature will be considered as generic shape 
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with which designer can associate certain attributes and knowledge useful for reasoning about the 
product [17]. 
 
3D MESH SEGMENTATION  
Semantic of models is all information in addition to its geometry. More precisely, local semantics are 
information on the individual parts which composed the model, as functional specifications, modeling 
methods, general Product Manufacturing Information (PMI), and design intents. In a RE process, the 
objective of the segmentation is to cluster points (vertices) with similar characteristics into homogeneous 
meaningful regions [18]. Segmentation is considered as semantic if computed segments can be 
associated with local features of the definition model. 
 Many methods are based on shape analysis that extract geometric intrinsic information on each 
vertices of the mesh, and cluster points with similar properties, and/or divide the mesh by identifying 
edges between regions. Most of the technics could not be considered as straightforward semantic 
segmentation methods, in the sense that no label are attributed to segment, which can hardly be 
associated with features. On the other hand, model-based methods use the analytic definition of quadric 
shapes to identify and group vertices as part of a primitive geometry. Methods usually detect the type 
of surface, and then compute the primitive generic (canonic) equation with a classic least square fitting 
algorithm [1], [4], [16]. Because 85% of engineering CAD models can be represented by associations of 
primitive shapes [6], methods for complex surfaces processing (as [3], [17]) have not been intensively 
studied in the literature, especially for mesh semantic segmentation. According to [19], non-regular 
shape identification in raw data would make shape reuse possibilities wider, but freeform features 
should not depend on a predefined library. Based on that assessment, machine/deep learning 
technologies are applied to RE purposes for several applications as global mesh labeling [7], [9], [21], 
primitives fitting improvement [12], or parametric curves and surfaces approximation [11]. As opposed 
to purely mathematical model fitting and geometric reasoning, deeper methods extract feature 
descriptors during a supervised learning phase to apply semantic segmentation and labeling [15]. Besides 
not being restricted to generic shapes, machine/deep learning techniques are usually presented as 
outperforming geometric reasoning in term of completeness, noise robustness, and generalization [20]. 
However, those are known to require high computation capacities and long processing (learning) time, 
when shape descriptors should meet certain requirements in terms of simplicity, easiness of calculation 
and processing speed [13].      
 The review of RE techniques reveals limitations for RE activities on aeronautic components, 
especially for the segmentation step. Local features with complex shapes (such as blades) can hardly be 
identified and isolated with most common mesh segmentation methods. Therefore, CAD 
surfaces/volumes modeling from aeronautical Parts digitized data is a complex and time-consuming 
process, even for skilled users. To overcome the complexity of RE activities for aeronautical components, 
next sections present a study on specific semantic segmentation methods and tools for complex shapes 
identification and semantic segmentation of Part meshes.       
 

Studies on semantic segmentation for aeronautic Parts: 

 

CONTEXT AND CHALLENGES 

Following studies are part of researches carried out in the context of a PhD thesis in partnership with 
industrials from the aeronautic sector. In our applications, RE for aeronautical parts is characterized by 
heavy meshes (up to 10M vertices) that are to be re-modelled with high precision and details. In this 
work, we will only consider the segmentation step of the overall RE process, considering that digitized 
mesh quality and conformity is ensured by the metrology department. Moreover, modelling steps 
consists of b-rep surfaces fitting and/or deformable templates fitting to the mesh, which can be 
completed with sufficient results by commercial RE software [5]. Three methods for semantic mesh 
segmentation will be studied and compared on real aircrafts engines parts. First two are model-based 
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methods using Ordinary-Least-Squares nonlinear regression1 and Gaussian Process regression2 for 
complex surface models approximation. The third method consists in using the neural network 
Pointnet++ [15] on a private dataset to evaluate Deep-learning capacities for semantic segmentations in 
the aeronautic area.  

KNOWLEDGE CAPITALIZATION ON 3D DATA 

Component presented in Fig. 1 is taken as an example in the following: 

𝑃𝑎𝑟𝑡𝑑𝑒𝑓 refers to a definition CAD model, and 𝑆𝑑𝑒𝑓𝑖
 ( 𝑖 ∊ [1, 𝑛]) to 𝑛 local surfaces (ie. features to be 

identified in a mesh). 𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛 is the digitized model (mesh) of one physical component. 𝑃𝑎𝑟𝑡𝑚𝑒𝑠ℎ and 
𝑆𝑚𝑒𝑠ℎ𝑖 refers to tessellated 3D models of 𝑃𝑎𝑟𝑡𝑑𝑒𝑓 and 𝑆𝑑𝑒𝑓𝑖

. Finally, 𝑠𝑒𝑔𝑚𝑖 are sub-meshes of 𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛. If 

the semantic segmentation performs well, 𝑠𝑒𝑔𝑚𝑖 should be the image of 𝑆𝑑𝑒𝑓𝑖
 in 𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛. Methods in this 

study are based on a capitalization (learning) phase that computes “features signatures”, called 𝑠𝑖𝑔𝑛𝑖 , 
that consist of shape descriptors and feature’s metadata. 

Polynomial implicit functions of surfaces  

This method is a model-based segmentation technique that seeks to fit an algebraic surface into the 
point cloud. Just like the well-known RANSAC method (cf. [1], [16]) iteratively optimize primitives fitting 
to regions of points in a Cartesian space, our method try to fit more complex surfaces defined by high 
order polynomial implicit functions.      

 An implicit function 𝑓𝑑  (with degree 𝑑) of a surface 𝑆𝑑𝑒𝑓 is defined as follow: 

𝑆𝑑𝑒𝑓 =  {𝑝(𝑥, 𝑦, 𝑧)  | 𝑓𝑑(𝑝) = 1 },     𝑓: ℝ3 → ℝ,   𝑓𝑑(𝑥,  𝑦,  𝑧) = ∑ ∑ ∑  𝛼𝑑𝑥,𝑑𝑦,𝑑𝑧
  𝑥𝑑𝑥𝑦𝑑𝑦𝑧𝑑𝑧𝑑

𝑑𝑧=1
𝑑
𝑑𝑦=1

𝑑
𝑑𝑥=1  (1) 

with (𝑑𝑥 + 𝑑𝑦 + 𝑑𝑧 ≤ 𝑑) 

 This mean, for any point 𝑝𝑗 of 𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛 , and for an admitted threshold 𝜀: 

𝑝𝑗 ∈ 𝑠𝑒𝑔𝑚𝑖        𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓        |𝑓𝑑(𝑝𝑗) − 1| < 𝜀      (2) 

 
1 https://towardsdatascience.com/introduction-to-linear-regression-and-polynomial-regression-f8adc96f31cb 
2 https://towardsdatascience.com/gaussian-process-regression-from-first-principles-833f4aa5f842 
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Fig. 1: Simplified sketch of an aircraft engine exhaust casing and its blade’s topology. 

Fig. 2: overall RE process. 
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 𝑓𝑖,𝑑 parameters are approximated with Ordinary Least Square polynomial regression3 on 𝑆𝑚𝑒𝑠ℎ𝑖 

points (ie. vertex), and represent the shape descriptor (called OLS model) of 𝑠𝑖𝑔𝑛𝑖. Model fitting to 
random data points consists of a rigid transformation optimization that minimize the squared sum of 
predictions errors. On a set of m points, parameters (𝜃𝑥,  𝜃𝑦,  𝜃𝑧,  𝑡𝑥,  𝑡𝑦,  𝑡𝑧) optimization is computed to 

minimize: 

𝑐𝑜𝑠𝑡𝑖 =  ∑ (𝑓𝑖,𝑑(𝑥𝑡,𝑗 ,  𝑦𝑡,𝑗 ,  𝑧𝑡,𝑗) − 1)
2

   𝑚
𝑗=0 ,  (

𝑥𝑡

𝑦𝑡

𝑧𝑡

1

) = 𝑀. 𝑝 =  (

𝜃𝑥𝑥 𝜃𝑥𝑦 𝜃𝑥𝑧 𝑡𝑥

𝜃𝑦𝑥 𝜃𝑦𝑦 𝜃𝑦𝑧 𝑡𝑦

𝜃𝑧𝑥 𝜃𝑧𝑦 𝜃𝑧𝑧 𝑡𝑧

0 0 0 1

) . (

𝑥
𝑦
𝑧
1

) (3) 

 𝑀 is the transformation matrix computed with parameters (𝜃𝑥,  𝜃𝑦,  𝜃𝑧,  𝑡𝑥,  𝑡𝑦,  𝑡𝑧). 

Whether the minimized 𝑐𝑜𝑠𝑡𝑖 with optimized parameters is under an admitted threshold or not, we can 
determined if randomly selected data points can be labeled as 𝑆𝑑𝑒𝑓𝑖

. By iteratively trying to fit candidate 

models 𝑓𝑖,𝑑 to input data points, best label is attributed and the semantic segmentation of the mesh is 

performed by growing segments to neighboring points (with respect to equation (2)).   

 

The methodology for the study is as follow: 

(a) Signatures capitalization on several features (𝑆𝑑𝑒𝑓𝑖
) of several Parts. (cf. Fig. 3)  

(b) Model analysis and evaluation: predictions results when approximating 𝑓𝑖,𝑑 on tessellated 

features are analyzed for 4 < 𝑑 < 8 (equation (1)). For the best degrees of fitting, we compute 
𝑠𝑒𝑔𝑚𝑖  on 𝑃𝑎𝑟𝑡𝑚𝑒𝑠ℎ (equation (2)). The comparison of 𝑠𝑒𝑔𝑚𝑖 and 𝑆𝑚𝑒𝑠ℎ𝑖

 show the segregations 

capability of the OLS surface model.   

(c) Method evaluation: A random rigid transformation is applied to 𝑆𝑚𝑒𝑠ℎ𝑖. Competing 𝑓𝑖,𝑑 are fitted 

on randomly selected local regions (equation (3)). The capacity of the OLS model to label a 
feature and extract corresponding segment from the global mesh is determined by the 
percentage of labeling success on a high number of try (if a local regions is correctly labelled, 
predictions on neighboring points is used to grow the segment.)    

(d) The same operation is done with local regions of 𝑠𝑐𝑎𝑛 (for now manually selected). 

 

Gaussian Process Regression  

The second method doesn’t use a specific model like (1) to approximate a function 𝑓𝑑 on data points, 
but rather uses Gaussian Process Regression (GPR). Gaussian process is a stochastic supervised learning 
tool that defines a distribution over a function. Advantages in using GPR instead of Implicit functions 
is that there are less parametric and no parameters choices like degree are needed. 

       The idea behind this method is quite similar to the first one: by approximating 𝑔𝑝𝑟(𝑥, 𝑦, 𝑧) = 1 (called 
GPR model) over 𝑆𝑚𝑒𝑠ℎ𝑖

, a fitting cost (3) can be computed for local regions labelling. Applied 

 
3 https://www.statsmodels.org/stable/generated/statsmodels.formula.api.ols.html 

Fig. 3: method for feature signature. 

 𝑃𝐼𝑇() refers to the function that applies the Principal Inertia Transform to 𝑆𝑚𝑒𝑠ℎ (which is used for stable pose for 
model approximation, and initial pose for model fitting). 𝑅𝑂𝐼() computes the Axis Aligned Bounding Box (AABB), 
which gives general information on features dimensions. 
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methodology for evaluation is very similar to the previous one, except Gaussian Process Regression4 is 
used instead of OLS polynomial approximation.  

  

Deep Learning  

Nowadays, researches have shown the potential of deep-learning in 3D geometry processing [20]. Tools 
as Artificial Neural Network (ANN) are able to learn deep shapes descriptors and apply semantic 
segmentation without shape typology-related limitations. Pointnet ++ ANN [15] is used for simple point-
clouds segmentation by recognizing local features and adding labels to each point. However, to our 
knowledge, very few works show applications for real industrial needs. For comparative study with 
previous methods, we tried to use Pointnet++5 for the semantic segmentation of our example Part.   

 First, we reproduced results of the research paper [15] on the public dataset Shapenet6. Then, we 
developed a program for private dataset generation. The dataset consist of 𝑃𝑎𝑟𝑡𝑚𝑒𝑠ℎ point clouds with 
associated labels to each vertex (label 1 if the vertex is part of any 𝑆𝑚𝑒𝑠ℎ1, same for any capitalized 

features. Otherwise, vertex label is set to 0). Thousands of training files are generated by applying 
random rigid transform to data points, adding Gaussian noise to coordinates, and making random 
permutation between lines. After training and testing Pointnet++ model on the dataset, we achieved 
promising results.  

 In the next section, results of the study are presented, and methods are discussed. 

 

Results and discussions:  

First, we analyzed polynomial and Gaussian Process Regressions models approximations on 𝑆𝑚𝑒𝑠ℎ𝑖 with 

Mean Squared Error, Standard Deviation and Range of predictions errors: 

 

OLS and GPR models can approximate every different local surfaces of our studies with high precisions. 
Because both models are intrinsically unbounded, false positives can be solutions of equation (2) when 
results are predicted on every vertices of a global mesh, and be added to 𝑠𝑒𝑔𝑚𝑖. 𝑃𝑎𝑟𝑡𝑚𝑒𝑠ℎ segmentations 
results (Fig. 5) show the model’s segregation capacities: segmentations results with OLS models have 
high rates of false positive. For example, those represent up to 20% for 𝑠𝑒𝑔𝑚4 and 𝑠𝑒𝑔𝑚5. On the other 
hand, GPR models have very low false positive rates, underlying their high segregation capabilities. 
However, Gaussian Processes lose efficiency in high dimensional spaces. This results in a much higher 
computation time for mesh segmentation with GPR models than with OLS models (for example, 
computing  𝑠𝑒𝑔𝑚1 on 𝑃𝑎𝑟𝑡𝑚𝑒𝑠ℎ (equation (2)) takes less than 1 second with OLS model, and approximately 
2800 seconds with GPR model.  

 
4 https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html 
5 https://github.com/yanx27/Pointnet_Pointnet2_pytorch 
6 https://shapenet.cs.stanford.edu/media/shapenetcore_partanno_segmentation_benchmark_ 

Fig. 4: model approximation analysis. 
Computation time on ~4000 points is approximately 4 seconds with OLS model, and 30 seconds for GPR 
models. Predictions time are respectively 0.02 and 30 seconds 
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Next stage consists in evaluating if approximated models can precisely be fitted on features which have 
been randomly transformed. Result for 100 try on each feature are presented in Table 1.  

 

  

 

 

 

 

 

 

 

OLS model fitting time makes it the most suitable model for the method. In the last experiment, random 
local regions (inside a sphere of radius 5 to 100 mm) of the global mesh are extracted and each 
capitalized models are fitted on it. Labeling can be considered as a success if the best fitting score 
correspond to the actual feature’s OLS model, and the segment is correctly extended to neighboring 

points.  

OLS model fitting method proved to be valid for a semantic segmentation of aeronautical Part meshes, 
but still requires improvement for more reliability. Some features are wrongly labelled if the originally 
selected region is too small, or features with similar shapes can be confused. However, the method 

Feature label Model Result (success / 
try) 

Average optimization time 

1 OLS 90% 12 

GPR 80% 448 

2 OLS 95% 13 

GPR 85% 757 

3 OLS 70% 4 

GPR 100% 265 

Tab. 1: model fitting on transformed features results. 

Fig. 5: Models evaluations. 

Fig. 6: local regions labeling and segment generation with OLS model 
fitting method.   
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mostly succeeds to identify, recognize, and compute segments of local complex features in heavy 
meshes.    

 The last studied method for semantic segmentation of aeronautical meshes is the use of the ANN 
Pointnet++. Used dataset is generated from 𝑃𝑎𝑟𝑡𝑚𝑒𝑠ℎ and is composed of 3000 point clouds with each 
around 900 000 vertices points. Each blade is decomposed in 4 features, remaining vertices of the model 
are set to label 0. Training took approximately 36 hours for six epochs, and was stopped because 
evaluations metrics were not evolving. Figure 7 illustrates the results on a test data: For labels 1 to 4, 
true positives rates are respectively 5.8%, 6.03%, 3.47% and 0%. 83.4% of point which have been labelled 
0 (brown points) are true positives. Segmentations results of the blades features is still poor, but most 
false positive are located in the neighborhood of the actual features. 

Several limitations about our experimentation method should be considered: first, the limited 
number of epochs; then the use of Pointnet++ witout any parameter changes (as MLP tuning, or labels 
weights); and finally the fact that training data are highly unbalanced (label 0 represents approximately 
83% of data points). However, this first experiment of using the ANN Pointnet++ for aeronautical 
components meshes segmentation shows promising results, as it can detect the presence of specific 
features with complex shapes in the right area. Moreover, as previous method, deep shape descriptors 
are robust to Euclidean transformations and works well for multi-instantiated features. Further 
experimentations and Neural Network parametrization will hopefully give better results. Nevertheless, 
the use of such technology for industrial needs is questionable, as it requires great computations 
capacities and time.      

 
Conclusions: 

We presented a study on semantic segmentation for Reverse Engineering activities on aeronautical 
components. We compared different technologies for subdividing 3D meshes into semantically 
meaningful sub-meshes that represent features of the definition CAD model. Our major proposition is 
the use of surface models using high degree analytic functions approximation and Gaussian process 
regression to extract and recover geometric information on complex shapes. By capitalizing surfaces 
models on definitions CAD 3D models, those can later be used as shape descriptors for sub-mesh 
labeling and global mesh segmentations, allowing semi-automated processing of complex aeronautic 
surfaces in heavy digitized data. However, this method still needs extensive testing and improvements   
to avoid errors when used to identify small features, or features with very similar shapes.  

Although incomplete, we introduced a study on Deep learning applications in industrial context by 
testing the state-of-the-art Artificial Neural Network Pointnet++ for point clouds segmentation on a 
private dataset. Results are very promising, but actual use of such technology in industrial context would 
require optimizations for faster computation.  

Further improvements of studied methods and tools will hopefully result in the development of 
performant shape descriptors able to identify complex features in Part meshes. The semi-automated 
semantic segmentation of digitized data will greatly simplify RE activities for aeronautic components.            

Fig. 7: Part segmentation results with Pointnet++. 
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