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Introduction: 
Cooling performance of the fire extinguishing system is critical to the safety and reliability of the 
battery pack in an electric vehicle, which can be affected by various factors such as the environment 
temperature and battery heat production rate [3]. The minimal sensitivity to different factors is 
required in the robustness design of the battery pack. The following three approaches are usually used 
to reduce sensitivity of performance boundaries to uncertain factors: analytical approach, 
experiments-based approach, and simulation-based approach [5]. 

The analytical approach is not suitable for complex systems without known mathematical 
relationships [1]. In the experiments-based approach, battery pack fire-extinguishing cooling 
experiments require a large number of experimental samples. Simulation-based robust design 
methods use the Monte Carlo sampling method to simulate the effect of parameter variation on 
product performance, which requires the sample probability distribution model and a lot of time in 
process [2]. As variations of uncertain factors have not been systematically studied, the worst limit of 
the cooling performance of a fire extinguishing system should be considered in the design for safety. 
The cooling performance of the battery pack fire extinguishing system is optimized in this paper 
based on the worst-case method and adaptive surrogate model. An accurate surrogate model is 
established with fewer samples to minimize the maximum temperature of the battery pack and reduce 
the risk of thermal runaway of the battery. Meanwhile, the workload of simulation calculation is 
reduced, resources are saved and optimization efficiency is improved. 

Main Idea: 
Modeling of Battery Pack Fire Extinguishing System 
The structure of a fire extinguishing system in an electric vehicle battery pack is shown in Fig. 1. 
Related parameters affecting the cooling performance are to be optimized for the minimal influence of 
uncertain parameters. Design and uncertain parameters are summarized in Tabs. 1 and 2, respectively. 

The stored liquid carbon dioxide fire extinguishing agent is vaporized into the low temperature 
carbon dioxide gas due to the pressure drop during battery fire extinguishing and cooling. After being 
adjusted by the shunt, they enter the battery thermal runaway module from the system pipe at the 
given inlet flow rate and inlet pressure, and are ejected from the jet valve port above the battery. Air in 
the battery module container is discharged from the safety valve port. The outlet boundary condition 
is that the outlet pressure is equal to the atmospheric pressure.  

Uncertain parameters are summarized in Tab. 2. Boundaries of the uncertain parameters are 
considered as follows. 
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• Surface heat flux of the normal battery: According to experimental studies, the volume heat 
rate of lithium-ion monomers ranges from 7895.33W/m3 to 10079.6W/m3. The heat generated 
by the battery is expressed by the heat flux on the battery surface, and the value range is [41.5, 
49.5] W/m2. 

• Surface heat flux of the thermal runaway battery: The surface heat flux of thermal runaway 
battery is expressed as 40 times of the surface heat flux of normal battery. 

• Ambient temperature: In actual conditions, the normal operating temperature of EV battery 
pack is between -20℃ and 50℃. 

• Ambient pressure: The actual ambient pressure is not fixed, and the change of atmospheric 
pressure is related to uncertain factors such as height, location and gas movement. 

 

 
 

Fig. 1: Battery pack fire extinguishing system and simplified battery module. 
 

Name Symbol Boundary Unit 

Inner diameter of the safety valve D1 [10,15] mm 

Inlet flow rate of the fire extinguishing agent D2 [70,100] m/s 

Inlet pressure of the fire extinguishing agent D3 [5.5,6.5] mPa 

Inner diameter of the fire extinguishing system pipeline D4 2/2.5/3 mm 

 
Tab. 1: Design parameters of the fire extinguishing system. 

 

Name Symbol Boundary Unit 

Surface heat flux of the normal battery U1 [41.5,49.5] W/m2 

Surface heat flux of thermal the runaway battery U2 [1620,1980] W/m2 

Ambient temperature U3 [253,323] K 

Ambient pressure U4 [0.091,0.111] mPa 

 
Tab. 2: the related uncertain parameters of the cooling performance of the fire extinguishing system. 

 
Evaluation of Cooling Performance Robustness 
The maximum temperature (T) is used to measure the cooling performance of the fire extinguishing 
system and evaluate the potential risk of thermal runaway behavior of battery cells. Based on the 
worst-case method and safety principle, this paper uses the upper bound (TUB) of the maximum battery 
pack temperature after fire extinguishing and cooling to evaluate the performance of the fire 
extinguishing system. Lower value of TUB provides the better cooling performance. TUB should be under 
safety critical temperature point TNR. The safety temperature is searched for the critical point at which 
the thermal runaway reaction and reignition of the battery will not occur, which is determined by the 
occurrence condition of the decomposition reaction of the battery. 
Robust Optimization Process 
360 initial sample design points are randomly selected using the Latin hypercube sampling method. 
The response value of each sample point is searched by simulation to build the system input and 

 

Inlet Pipeline Outlet 

D2 D3 
D4 D1 
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output sample database. Initial sample data are used to build an initial surrogate model of the system. 
In order to minimize the maximum temperature (T) after fire extinguishing and cooling, corresponding 
design parameter set D=(D1,D2,D3,D4) and uncertain parameter set U=(U1,U2,U3,U4) are obtained as 
follows formula (1). 

 
1 2 3 4 1 2 3 4

NR L U L U

Find: , , , and , , , ,

Minimize :

Subject to: , , , , .

Optimized input design parameter set  

m m m n n n

D D D D U U U U

T

T T D D D U U U

D U

 (1) 

where DmL and DmU represent lower and upper boundaries of the allowable interval of the mth design 
parameter in the design parameter set respectively; UnL and UnU represent lower and upper boundaries 
of the allowable interval of the nth design parameter in the uncertain parameter group. The real 
response value of the optimized design point is obtained through simulation, which is added to the 
sample database as a group of new sample data to update the surrogate model of the system. In this 
process, new sample data are constantly obtained, and the surrogate model is updated iteratively until  
the termination condition is met: coefficient of determination R2 > 0.95[4]. 

For a certain set of design parameters, there are different response values of cooling performance 
evaluation indexes when the value of uncertain parameters is different. Based on the principle of safety, 
the cooling performance should meet requirements of fire extinguishing in the worst case. Therefore, 
the worst limit of cooling performance corresponding to each design parameter is searched. In this 
paper, the upper bound of the maximum temperature of the battery pack after fire extinguishing 
cooling is used as the response value of the cooling performance evaluation index. The maximum 
response value corresponding to each set of design parameters is its worst case. In order to maximize 
the response value of cooling performance evaluation index corresponding to each design parameter, 
the worst case corresponding to each design parameter is searched as follows formula (2). 
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where iT  is the response value of cooling performance evaluation index corresponding to the ith design 

parameters set. UB
iT  is the upper bound of the response value of the cooling performance 

corresponding to the ith design parameters set, namely, the maximum value of iT . 

Based on the worst case corresponding to each design parameter set, the worst-case surrogate 
model of the system is established. The higher upper bound TUB of the maximum temperature after 
cooling represents the higher thermal runaway risk of a battery. For minimizing TUB, a set of design 
parameters is searched for the system sufficiently robust and response value of the performance index 
in the worst case within an acceptable safety range as follows formula (3). 
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Variables to satisfy constraints and objective functions are searched by optimization for design 
parameters. Fig. 2 is a multi-level robust optimization process for the cooling performance of the fire 
extinguishing system considering the variation of uncertain parameters. 

 
Optimization methods for comparison 
Deterministic optimization: Design parameters are optimized without considering uncertain 
parameters. The ranges of the design parameters are referred to Tab. 1. In this study, 400 sets of 
design parameters are extracted and simulated to generate their relevant temperature. On this basis, a 
surrogate model is built for searching the optimal values of design parameters. 

Traditional non-deterministic optimization: Design parameters are optimized considering 
uncertain parameters. The ranges of design parameters and uncertain parameters are referred to Tab. 
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1 and Tab. 2. In this study, 400 sets of design parameters and uncertain parameters are extracted and 
simulated for building the surrogate model to search the optimal values of design parameters. 

 
 

Fig. 2: Multi-level robust optimization considering variation of uncertain parameters 
 

Robust Optimization Result 
Optimized results of design parameters are shown in Tab. 3 and Fig. 3. The results are compared with 
results from two traditional parameter optimization methods. It is observed that the optimized design 
parameter by using the proposed method reduces the maximum temperature of the battery pack after 
cooling, which improves the robustness and safety of the battery pack. At the same time, comparing 
with the deterministic optimization, this paper considers the change of uncertain parameters in the 
robust optimization according to the worst case. Comparing with the traditional uncertain 
optimization, this paper adopts the iterative cycle of self-adapting updating sample points to 
constantly reconstruct the surrogate model, which makes the model reach the required prediction 
accuracy quickly, reduces the required number of samples, and improves the optimization efficiency. 
When the number of simulation or experimental tests is the same, the prediction accuracy of this 
surrogate model is higher, and the prediction of the optimal solution for the system design parameter 
set is more accurate than the traditional non-deterministic optimization method. 
 

 Symbol Initial value Deterministic  
optimization 

Traditional  
non-deterministic  

optimization 

The  
proposed  

optimization 

Design  
parameters 

D1 12 14.88 11.75 12.57 

D2 80 86.05 83.24 91.6 

D3 6.0 5.729 6.383 6.370 

D4 2.5 3 3 3 

The upper bound of T TUB 363.34 351.07 348.28 342.78 

 
Tab. 3: Comparison of optimization results 

Obtain initial sample 
points by Latin hypercube 

sampling 

Sample 
points 

database 
(D,P)m 

Simulation calculation 
T=(D,P) 

Construct a 
surrogate model 

Termination 
conditions 

Worst-case optimization: 
Find: worst-case of Di 

Maximize: Ti 

The design optimization: 
Find: Parameters set D 
Minimize: TUB 

Adaptive surrogate 
model optimization: 
Find: Parameters set (D,U) 
Minimize: T 
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Construct a worst-case 
surrogate model 

NO 

SAVE 

YES 
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Fig. 3: Comparison of temperature distribution after cooling: (a) Initial design parameters, (b) 
Traditional optimization, (c) Traditional non-deterministic optimization, (d) Proposed optimization. 

Conclusions: 
In order to improve the robustness and safety of battery packs, a novel robust optimization method is 
proposed to minimize the upper bound of the worst-case cooling performance response value of the 
fire suppression system. An adaptive surrogate model is developed to construct an accurate surrogate 
model with fewer samples, which improves the optimization efficiency and also predicts more 
accurately the optimal solution for the design parameter set of the fire suppression system. The 
effectiveness of the proposed method is verified by comparing with the traditional robust optimization 
method. 
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