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Introduction:

Triangular mesh o�sets are useful for hollowing 3D models [7], generating tool paths [5], for clearance
analysis and robot path planning among other applications. Smaller o�sets are also used to account
for shrinkage in casting and rapid prototyping. It is however di�cult to compute mesh o�sets that are
simultaneously defect free and preserve sharp corners.

There are three broad category of techniques for o�setting triangular meshes. In the �rst category
are techniques that obtain the mesh o�set by computing the Minkowski sum of the mesh with a sphere
of o�set radius [14]. A exclusive Minkowski sum approach however requires computing a large number of
computationally expensive and numerically unstable booleans. The second category comprises techniques
where either the triangles or vertices of the original mesh are translated along a normal to create the
o�set. In approaches where the triangular faces are moved, they invariably create self-intersections in
concave regions and gaps in the convex regions [6], and in techniques where the vertices are moved while
maintaining the original topology of the model, the o�set becomes increasingly inaccurate as the o�set
distance increases [12].

A third group of techniques used are those based on volumetric or surface sampling followed by surface
reconstruction [11] [14] [8] [9]. In these techniques the o�set surface is approximated using a point cloud
or a distance �eld and an appropriate surface reconstruction algorithm is used to triangulate the o�set
surface. An implicit surface reconstruction technique guarantees a watertight model at the cost of some
inaccuracy. Explicit techniques are not very common since they cannot handle noisy point cloud data
and do not guarantee a watertight model. In this paper we present a sampling-based method that uses
a rarely explored explicit surface reconstruction technique. Our method is fast, preserves sharp corners,
and is easy to implement. The major steps of our approach are described brie�y in the sections below.

A New Sampling-based Approach:

Our approach consists of �rst approximating the mesh o�set using a uniformly distributed point cloud
that has been trimmed to eliminate self-intersections. The trimmed point cloud is then triangulated
using the Ball- Pivoting Algorithm (BPA) [1] modi�ed to pivot the ball in the interior of the point cloud
and extended to preserve sharp concave corners (see Fig. 1). Our experiments show that the BPA is
a very robust algorithm if applied to a uniform point cloud. And while our method does not always
produce completely defect-free meshes, it is only because we need a more robust method for estimating
the normals at the trim boundary of very sharp corners.
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Fig. 1: Left: Original mesh with trimmed point cloud at o�set distance; Right: Triangulation of the o�set
point cloud.

Fig. 2: Left: Point cloud using random point distribution; Center: Point cloud using pseudo-random
point distribution; Right: Point cloud using the Poisson-disk decimator.

Uniform Point Cloud Generation:

Our early experiments showed that the BPA works well and produces good and aesthetically pleasing
triangulation when the input is a fairly uniform point cloud. It is possible to iteratively apply the BPA
using balls of increasing radii to triangulate a non-uniformly distributed point cloud. However in practice
it is di�cult to determine the range and number of di�erent ball radii to use for a given non-uniform
point cloud.

Generating a globally uniform point distribution however is harder than it initially appears. Real-
world 3D models are typically non-uniformly tessellated which makes it di�cult to ensure a globally
uniform point cloud density when sampling each triangle independently (see Fig. 2). Locally this is
because the boundary between neighboring triangles get approximated twice and globally because the
model is likely to contain very large triangles as well as small and sliver triangles, with the result that
there are regions which have a much higher concentration of boundary edges and therefore also a higher
density of points.

Generating a uniform point distribution inside a triangle is equally di�cult. A random sprinkling
of points inside a triangle is far from uniform and not ideal for a triangulation algorithm. A more
appropriate method is to use a quasi-random distribution of points [13]. For a globally uniform point
distribution though, we �rst generate a much denser point cloud, trim it to retain only points that are
at o�set distance, and then decimate it using Poisson-disk sampling.
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Fig. 3: Left: Triangulation with no trim points at sharp corners; Right: Triangulation with trim points.

O�set Point Cloud Trimming:

After generating the initial o�set point cloud, but before decimating it using Poisson-disk sampling, we
trim the self-intersecting regions of the point cloud at the concave corners and near the boundaries of
the patch surfaces. In order to trim the o�set point cloud of self-intersections we check each point and
�nd the minimum distance from the point to the original mesh. To do this we overlay a voxel grid of
o�set distance resolution on the original triangulated mesh, where each voxel stores the list of triangles
which pass through or intersect that voxel. For a given point in the o�set point cloud, we �rst �nd the
voxel in which it located, and then �nd all the triangles in the 1-voxel neighborhood of this voxel. Next
we compute analytically the minimum distance of the o�set point under consideration to each of the
triangles found in the 1-voxel neighborhood and if the minimum of these distances is less than the o�set
distance we discard the point and mark it as invalid.

Preserving Sharp Corners:

For each invalid point found during trimming, we explore the neighborhood of the point to see if we can
�nd a nearby valid point that lies on the trim boundary. Finding points on the trim boundary is essential
for preserving sharp concave features in the o�set. Without the presence of these trim boundary points
and a surface reconstruction method that includes these points the triangulation in the sharp corners
would be very jagged (see Fig. 3). Jagged corners not only add to the inaccuracy of the o�set, they are
also problematic in many domains like manufacturing and for tool path generation.

To �nd the trim boundary points we �rst compute two orthonormal vectors lying on the o�set surface
at each invalid point. Next, at the point cloud resolution distance along each of these orthonormal
directions we �nd two points, one in either direction. If any of these four points are valid, we do a binary
search between the invalid point and the valid point to �nd the nearest valid point to the invalid point.
This point is then added to the point cloud.

Point Decimation by Poisson-disk Sampling:

As noted earlier, it is very di�cult to generate a globally uniform point cloud directly by random sampling
on the mesh (see Fig. 2). We therefore initially generate a much denser point cloud using quasi-random
sampling, and then decimate the points using Poisson-disk sampling to get a globally uniform distribution.

We implement Poisson-disk sampling using a voxel map constructed at the desired point cloud reso-
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Fig. 4: BPA ball radius r must be less than o�set distance d so that it can access all points.

lution r. We then iterate randomly through all the voxels and for each non-empty voxel select a random
point from the voxel as a candidate point to preserve. We then �nd and discard all other points in the
r-neighborhood of the candidate point (i.e. 1-voxel neighborhood in the voxel map).

Triangulation using the Modi�ed BPA:

The Ball-Pivoting Algorithm (BPA) [1] [4] is an elegant method for triangulating a set of non-noisy
points, and thus ideally suited for our purpose where the point cloud is arti�cially generated. Our choice
of the BPA was also driven by the ease with which we could extend the algorithm by adding our own
heuristic for the preservation of sharp concave corners.

Our modi�cations to the BPA are trivial but nonetheless very important. First, instead of rolling the
ball outside the point cloud we roll it inside the point cloud. This choice forces us to use a ball radius
less than the o�set distance and also a denser point cloud (see Fig. 4). Rolling the ball inside point cloud
enables us to properly triangulate narrow channels and gaps which the standard BPA (and most other
implicit and explicit surface reconstruction technique) cannot handle.

Initially we explored heuristic relaxation of various checks in the BPA to preserve sharp concave
corners. However, further research indicated that all these heuristics could be eliminated if only the
normals at the trim boundary point could be accurately estimated. We therefore developed various
methods to estimate the normal at the trim points by exploring the points in the neighborhood of the
trim point. We note here that accurate normal estimation at the trim points is not always easy especially
at very sharp concave corners and in the absence of proper trim normals some relaxation heuristics will
be required.

Conclusions:

O�setting triangular meshes is a di�cult problem to solve robustly. Taking a Minkowski sum approach
o�ers a possible solution, but depends upon the availability of a robust mesh boolean implementation,
which is an equally di�cult problem to solve. Taking a volumetric approach where the o�set is approxi-
mated by a signed distance �eld and then using an implicit surface reconstruction technique is probably
the most common technique used not only for surface reconstruction in general but also for estimating
o�sets. These volumetric approaches however do not scale well because the memory required to store the
volumetric data increases exponentially with model size, and a coarser voxellization reduces the accuracy
of the reconstruction. In this paper we have described an unorthodox approach for computing mesh
o�sets using the Ball-Pivoting Algorithm which is a relatively uncommon explicit surface reconstruction
technique. We have shown how the method can be extended to preserve narrow gaps and sharp concave
corners in the o�set. Our results indicate that the method performs robustly as long as the normals at the
sharp corners are robustly estimated. Our method does not require much memory, however performance
remains a problem for large models and a robust normal estimation technique needs to be found.
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