Title:

# Surface Segmentation based on Concave Region and Flattenability 

## Authors:

Rui Li, lir34512@myumanitoba.ca, University of Manitoba
Qingjin Peng, Qingjin.Peng@umanitoba.ca, University of Manitoba
Keywords:
Surface segmentation, Concave region, Flattenability, Mesh surface
DOI: 10.14733/cadconfP.2021.78-82

## Introduction:

Surface segmentation is widely applied in digital modeling, 3D model construction and identification. In garment industry, a 3D-2D-3D process is commonly used to segment a 3D human body surface into 2D patterns for cutting the material into patches before reshaping the patches into the 3D body shape. Accuracy is essential to unfold a 3D surface into 2D patches that will be formed back to the 3D shape. Based on the computational geometry, only developable surfaces such as cylindrical and cone can be unfolded into a 2D plane without deformation and distortion. As most 3D free-form surfaces are nondevelopable, it is a challenge to unfold non-developable 3D surfaces into 2D patches with less deformation and distortion. Some cutting lines can be added on the original non-developable 3D surface to reduce deformation and distortion. Thus, the problem of non-developable 3D surface unfolding becomes the selection of a suitable position to add cutting lines.

Flattenability can be used to measure the surface ability to be unfolded into 2D patterns. This paper combines the concave region and flattenability to propose a surface segmentation method based on the extraction of surface features that include the vertex-level concave region, triangle-level concave region, curvature-level concave region and flattenability. Cutting lines are then fitted based on feature vertices by curve fitting.

## Main Idea:

The proposed method of the surface segmentation is described in Fig. 1. The input is a triangular mesh surface model. Surface features are first extracted. Feature vertices that satisfy all the features are used to form segmentation regions. A curve fitting method is then applied to design cutting lines to divide the surface into several parts using a least-squares fitting method. After then, the 3D surface is segmented into several segments to be unfolded into 2D patterns with less deformation and distortion.

## Implementation

The topology structure of a mesh surface $M$ is defined as a set $\{V, E, F\}$ including vertices, edges and triangles. $V=\left\{v_{i} \mid v_{i} \in R^{3}, 1 \leq i \leq m\right\}$ is a vertex set with $m$ vertices. $E=\left\{e_{i j}=\left(v_{i}, v_{j}\right) \mid v_{i}, v_{j} \in V, i \neq j\right\}$ is an edge set, $F=\left\{f_{i j k}=\left(v_{i}, v_{j}, v_{k}\right) \mid v_{i}, v_{j}, v_{k} \in V, i \neq j, j \neq k, i \neq k\right\}$ is a triangle set. $N^{i}$ is the set of one-ring neighborhood vertices of $v_{i}$. Surface features including concave regions and flattenability are selected to search segmented regions for cutting lines. Three regions include vertices-level concave region, triangle-level concave region and curvature-level concave region.


Fig. 1: Flowchart of the proposed surface segmentation method.
For searching the vertices-level concave region, vertex $v_{i}$ is considered as a concave vertex if at least one adjacent vertex $v_{j} \in N^{i}$ satisfies Eqn. (1) [1].

$$
\begin{equation*}
\left\langle\frac{v_{i}-v_{j}}{\left\|v_{i}-v_{j}\right\|}, N\left(v_{j}\right)-N\left(v_{i}\right)\right\rangle>\varepsilon_{1} \tag{1}
\end{equation*}
$$

where $N\left(v_{i}\right)$ and $N\left(v_{j}\right)$ are the unit normal vectors of $v_{i}$ and $v_{j}$, respectively.
The triangle-level concave region is searched as follows. For triangle $f_{i}$ and its adjacent triangle $f_{j}$, vertices on common edges of $f_{i}$ and $f_{j}$ are concave vertices if the relation of $f_{i}$ and $f_{j}$ satisfies Eqn. (2).

$$
\begin{equation*}
\frac{\cos \alpha_{i}+\cos \alpha_{j}}{2}>\varepsilon_{2} \tag{2}
\end{equation*}
$$

where $\alpha_{i}$ is the angle between the normal vector of triangle $f_{i}$ and the line connecting centroids of $f_{i}$ and $f_{j} . \alpha_{j}$ is the angle between the normal vector of triangle $f_{j}$ and their centroids as shown in Fig. 2. [2]. $\cos \alpha_{i}$ is calculated as follows.

$$
\begin{equation*}
\cos \alpha_{i}=\frac{\left\langle N\left(f_{i}\right),\left(c_{i}-c_{j}\right)\right\rangle}{\left\|N\left(f_{i}\right)\right\| \cdot\left\|c_{i}-c_{j}\right\|} \tag{3}
\end{equation*}
$$

where, $c_{i}$ and $c_{j}$ are centroids of $f_{i}$ and $f_{j}$, respectively. $N\left(f_{i}\right)$ is normal vectors of $f_{i}$ [2].
For searching the curvature-level concave region, vertex $v_{i}$ is a concave vertex if the mean curvature in vertex $v_{i}$ satisfies Eqn. (4). $v_{i}$ is decided by Eqn. (5).

$$
\begin{equation*}
H\left(v_{i}\right)>\varepsilon_{3} \tag{4}
\end{equation*}
$$


3D


2D



Fig. 2: Schematic diagram for mesh surface. Fig. 3: $\theta\left(v_{i}\right)$ for surface with different inner angles [4].

$$
\begin{equation*}
H\left(v_{i}\right)=\frac{1}{4} \sum_{j=1}^{n}\left\|e_{i j}\right\| \beta_{j} \tag{5}
\end{equation*}
$$

where $\beta_{j}$ is a dihedral angle for triangles $f_{i}$ and $f_{j}$, and $\left\|e_{i j}\right\|$ is the length of an edge as shown in Fig. 2.
Flattenability at $v_{i}$ is defined in Eqn. (6). A lower value of $\sigma\left(v_{i}\right)$ means that when unfolding a 3D shape into 2D patterns, the unfolded 2D patterns have less distortion and deformation. Thus, if $\sigma\left(v_{i}\right)$ satisfies Eqn. (7), $v_{i}$ is a feature vertex.

$$
\begin{gather*}
\varpi\left(v_{i}\right)=\left|\theta\left(v_{i}\right)-2 \pi\right|  \tag{6}\\
\varpi\left(v_{i}\right)>\varepsilon_{4} \tag{7}
\end{gather*}
$$

where $\theta\left(v_{i}\right)=\sum_{j} \theta_{j}$ is the summed inner angle in vertex $v_{i}$, as shown in Fig. 3. If $\theta\left(v_{i}\right)=2 \pi$, one-ring neighborhood triangles of $v_{i}$ can be unfolded into a 2D plane without distortion and deformation. If $\theta\left(v_{i}\right)<2 \pi$ unfolding one-ring neighborhood of triangles of $v_{i}$ will cause gaps. If $\theta\left(v_{i}\right)>2 \pi$, unfolding one-ring neighborhood triangles of $v_{i}$ will cause overlaps.

Flattenablility value (FLV) is applied to measure the flattenablility of the surface [3].

$$
\begin{equation*}
\mathrm{FLV}=10 \times 0.5^{\sum_{i=1}^{m}\left|\theta\left(v_{i}\right)-2 \pi\right|} \tag{8}
\end{equation*}
$$

Feature vertices are vertices that satisfy Eqns. (1, 2, 4, and 7) simultaneously. $\varepsilon_{1}$ to $\varepsilon_{4}$ in Eqns. (1, 2, 4, and 7) are the thresholds defined based on the shape of the model to generate enough feature vertices. After generating feature vertices, a curve fitting method is applied to segment the surface into several parts based on feature vertices. The 3D surface is first projected into a 2D plane. Cutting lines between two segments' boundaries are easy to put together into a whole surface. Thus, a polynomial function is applied as cutting lines between two adjacent segments as follows.

$$
\begin{equation*}
v^{y}=f\left(v^{x}\right)=a_{1} v_{x}^{n}+a_{2} v_{x}^{n-1}+\cdots+a_{n} v_{x}+a_{n+1} \tag{9}
\end{equation*}
$$

The least-squares fitting method calculates the function of cutting lines by minimizing the objective function as follows. After generating cutting lines, the surface is segmented into several segments.

$$
\begin{equation*}
\min \sum_{i=1}^{N}\left[f\left(v^{x} ; a_{1}, a_{2}, \cdots a_{n+1}\right)-v^{y}\right]^{2} \tag{10}
\end{equation*}
$$

where $N$ is the number of feature vertices.


Fig. 4: Segmentation of the nose model.

| Human nose model |  | No. vertices | No. edges | No. triangles | $\sum \omega$ | FLV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Whole model |  | 3039 | 17883 | 8999 | 12.3425 | 0.0019 |
| Segmented model | Segment 1 | 1248 | 3512 | 2265 | 6.0692 | 0.1489 |
|  | Segment 2 | 900 | 2487 | 1588 | 1.6734 | 3.1350 |
|  | Segment 3 | 695 | 1872 | 1178 | 0.9884 | 5.0404 |
|  | Segment 4 | 942 | 2611 | 1670 | 3.6115 | 0.8181 |

Tab. 1: Segmentation results of the human nose model.

| Car shell model | No. vertices | No. edges | No. triangles | $\sum \varpi$ | FLV |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Whole model | Segmented |  |  |  |  |  |
| Segodel <br> modent | Segmen | 1506 | 10981 | 7200 | 46.6140 | $9.3 \times 10^{-14}$ |
|  | Segment 2 | 901 | 4266 | 2753 | 21.4210 | $3.6 \times 10^{-6}$ |
|  | Segment 3 | 1018 | 2505 | 1605 | 10.4642 | 0.0071 |
|  | Segment 4 | 908 | 2797 | 1779 | 5.5552 | 0.2127 |

Tab. 2: Segmentation results of the car shell model.

## Case study

A human nose model and a car shell model are segmented in this study to reduce deformation when unfolding them into 2D planes. Both of them are non-developable surfaces.

The nose model contains 3039 vertices, 17883 edges and 8999 triangles as shown in Fig. 4(a). The value of $\sum \varpi$ for the model is 12.3425 . Red areas in Fig. 4(b) are regions with the large value of $\omega$. Red areas in Figs. 4(c) (d) and (e) are the vertex-level concave region, triangle-level concave region, and curvature-level concave region, respectively. Red areas in Fig. 4(f) are feature vertices selected from vertices in red areas in Figs. 4(b) (c) (d) and (e). Curve fitting is applied to generate cutting lines for segmenting the nose model as shown in Fig. 4(g). The segmented result of the model is shown in Fig. 4(h) and Tab. 1. FLV is applied to measure flattenability of the model, where a larger value of FLV means the surface is more developable. Tab. 1 lists the number of vertices, number of edges and number of triangles for the whole surface and segmented results. Values of $\sum \omega$ decrease and values of FLV increase after the segmentation. FLV of the whole model is 0.0019 . The model is segmented into 4 pieces with FLV $0.1489,3.1350,5.0404$ and 0.8181 , respectively. The segmented results of the nose model are shown in Fig. 4(i).

The car shell model contains 3775 vertices, 10981 edges and 7200 triangles. The value of $\sum \omega$ for the model is 46.6140. The segmented result of the car shell model is listed in Tab. 2. After the segmentation, values of $\sum \varpi$ decrease and values of FLV increase. FLV of the whole model is $9.3 \times 10^{-14}$. The model is segmented into 4 pieces with FLV $3.6 \times 10^{-6}, 0.0071,0.2127$ and 0.0194 , respectively.

For both human nose and car shell models, values of FLV for each segment increase significantly compared to the model without segmentations, which shows that segmented surfaces can be unfolded into 2D patterns with less deformation and can also maintain accuracy when 2D patches are formed back to the 3D shape.

## Conclusions:

This paper proposed a model segmentation method by combining the concave region and flattenability to generate segments from a 3D surface to 2D patterns with less deformation and distortion. Vertex-level, triangle-level and curvature-level concave regions, and flattenability are features for selecting segmenting regions. Vertices in these concave regions with the large value of $\varpi$ are selected as feature vertices. Curve fitting is applied to find cutting lines for the final segmented result. Two case studies validated performance of the proposed method. The FLV of surfaces is increased significantly after the segmentation.

## Acknowledgments:

The authors wish to acknowledge that this research has been supported by the Discovery Grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the Graduate Enhancement of Tri-Council Stipends (GETS) program from the University of Manitoba.

References:
[1] Au, O.-K.-C.; Zheng, Y.; Chen, M.; Xu, P.; Tai, C. L.: Mesh segmentation with concavity-aware fields, IEEE Transactions on Visualization and Computer Graphics, 18(7), 2011, 1125-1134. https://doi.org/10.1109/TVCG.2011.131
[2] Jiao, X.; Wu, T.; Qin, X.: Mesh segmentation by combining mesh saliency with spectral clustering, Journal of Computational and Applied Mathematics, 329, 2018, 134-146. https://doi.org/10.1016/j.cam.2017.05.007
[3] Li, R.; Peng, Q.; Ingleby, H.; Sasaki, D.: Improvement of flattenability using particle swarm optimizer for surface unfolding in bolus shaping, SN Applied Sciences, 2(9), 2020, 1-19. https://doi.org/10.1007/s42452-020-03330-9
[4] Wang, C.-C.: Towards flattenable mesh surfaces, Computer-Aided Design, 40(1), 2008, 109-122. https://doi.org/10.1016/j.cad.2007.06.001

