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Introduction:

On the researches of free-form curves, those of the quadratic curve have been become very active because
of κ-curves[1, 2]. In this paper, we will prove the uniqueness theorem on the shape of free-form curves
de�ned by three control points, including quadratic non-rational: integral and rational Bézier curves,
generalized trigonometric and hyperbolic curves and splines in tension [3].

Generalized Trigonometric Basis:
In this section, we describe our new generalized trigonometric basis. This is based on the trigonometric
cubic Bernstein-like basis [4], which we are going to review �rst.

The trigonometric cubic Bernstein-like basis functions have an extra shape parameter α, and are
de�ned by

f0 = αS2 − αS + C2 = 1 + (α− 1)S2 − αS,
f1 = αS(1− S),
f2 = α(S2 + C − 1) = αC(1− C),
f3 = (1− α)S2 − αC + α = 1 + (α− 1)C2 − αC, (2.1)

where S = sin πt
2 , C = cos πt2 , for α ∈ (0, 2), t ∈ [0, 1]. Note that these functions satisfy partition of unity,

i.e.,
∑3
i=0 fi(t) = 1 for any α. When α = 1, the above functions are simpli�ed to

f0 = 1− S,
f1 = S(1− S),
f2 = C(1− C),
f3 = 1− C. (2.2)

If we add the second and third functions together and rename them to u, v and w, we obtain blending
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functions {u, v, w} as follows:

u = 1− S,
v = S(1− S) + C(1− C) = S + C − 1,

w = 1− C.
(2.3)

It is straightforward to de�ne a curve by these blending functions with three control points, which we
can regard as a �linear� trigonometric curve since the highest degree the trigonometric functions are in is
one.

One interesting relationship among these functions is

v2 = 2uw, (2.4)

which enables

(u+ v + w)2 = u2 + 2uv + 4uw + 2vw + w2, (2.5)

and yields the �ve blending functions {u2, 2uv, 4uw, 2vw, w2}, associated with �ve control points. We
can de�ne a curve using these blending functions and regard it as a �quadratic� trigonometric curve since
the highest power of each blending function is now degree two.

In a similar way, we can extend blending functions of �degree� n with 2n + 1 control points. As
explained in Appendix, we can perform a recursive procedure to evaluate a curve of any degree similar
to de Casteljau's algorithm avoiding the overhead of trigonometric function evaluation. We call this
procedure Gobithaasan-Miura's recursive algorithm. This means that it is not necessary to calculate
the coe�cients of blending functions, or keep a coe�cient table. The coe�cients of the generalized
trigonometric curve are listed as an triangle as Pascal's triangle and we call it Miura's triangle as shown
in the Appendix.

Rational Quadratic Bernstein Basis:

It is very common to represent a circular arc by a quadratic rational Bézier curve as

C(t) =
(1− t)2P 0 + 2(1− t)tσP 1 + t2P 2

(1− t)2 + 2(1− t)tσ + t2
(2.6)

where σ is a weight of P 1. For example when P 0 = (−1, a), P 1 = (0, 0) and P 2 = (1, a) for a given a, if
σ = 1/

√
a2 + 1 the curve becomes a circular arc.

Hence we de�ne a blending function w(t) as follows:

w(t) =
t2

(1− t)2 + 2(1− t)tσ + t2
(2.7)

For this basis, the following equations is satis�ed:

v(t)2 = 4σ2u(t)w(t) (2.8)

Figure 1(a) shows graphs of {u(t), v(t), w(t)} = {w(1 − t), 1 − w(1 − t) − w(t), w(t)} for σ = 1/4,
1/2, 1/

√
2, 2 and 10. By increasing σ, a curve de�ned by these basis functions approaches to a polyline

connecting its control points.
Note that if σ = 1, since the basis becomes that of the non-rational quadratic Bernstein basis, α = 4.

If σ = 1/
√
2, α = 2. However w(t) 6= 1− cos(πt/2). Figure 1(b) compares these two basis functions and

they are very similar, but not indentical.
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s=1/sqrt(2)s=1/4
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Fig. 1: (a) Rational quadratic Bernstein basis functions, (b) Comparison between the rational quadratic
Bernstein basis functions and {1− sin(πt/2), sin(πt/2) + cos(πt/2)− 1, 1− cos(πt/2)}

Since there are two types of the bases whose α = 2, the conditions

{1− w(t)− w(1− t)}2 = αw(t)w(1− t) (2.9)

for a given constant α > 0 with w(0) = 0, w(1) = 1 and dw(0)/dt = 0 do not determine function w(t)
uniquely.

Notice that when t = 1/2, from the following equation:

(1− 2w(
1

2
))2 = αw(

1

2
)2

(4− α)w(1
2
)2 − 4w(

1

2
) + 1 = 0 (2.10)

When α = 4, w(1/2) = 1/4. Since 0 < w(1/2) < 1, when α < 4, w(1/2) = (2 −
√
α)/(4 − α) and when

α > 4, w(1/2) = (
√
α− 2)/(α− 4). Therefore although the basis functions are di�erent, if they have the

same α value, when t = 1/2, the values of these basis functions are exactly the same.

Uniqueness Theorem of the Shape of the Curve:

We will prove a theorem called uniqueness theorem of the shape of the curve. We assume that for
0 ≤ t ≤ 1 a curve C(t) is de�ned by three control points P 0, P 1 and P 2 as

C(t) = u(t)P 0 + v(t)P 1 + w(t)P 2 (2.11)

where 0 ≤ w(t) ≤ 1, 0 ≤ v(t) ≤ 1 and

u(t) + v(t) + w(t) = 1

u(t) = w(1− t)
w(0) = 0

w(1) = 1

dw(t)

dt
> 0 for 0 < t < 1 (2.12)

If there is such a constant α that

v(t)2 = αu(t)w(t) (2.13)
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for 0 ≤ t ≤ 1, then the following theorem is satis�ed:

Theorem 1. Uniqueness Theorem: The shape of the curve C(t) is determined by α exclusively and it

does not depend on the basis functions {u(t), v(t), w(t)} which are used to de�ne the curve.

Proof. For a given value w0 = w(t0), 0 ≤ w0 ≤ 1, let u0 = u(t0). Since v(t) = 1− u(t)− w(t)�

(1− u0 − w0)
2 = αu0w0 (2.14)

Hence

u0 =
(α− 2)w0 + 2−

√
αw0((α− 4)w0 + 4)

2
(2.15)

Since u0 is uniquely determined by w0, the location of the point C(t0) is also uniquely determined because
{u(t), v(t), w(t)} are barycentric coordinates of triangle P 0P 1P 2. By changing t from 0 to 1, w(t) also
increases from 0 to 1 and the shape of the curve C(t) is also completely determined.

Figure 2 shows u0 for 0 < w0 < 1 and 0 < α < 10

Fig. 2: u0 for 0 < w0 < 1 and 0 < α < 10

Conclusions:

We have proved the uniqueness theorem on the shape of free-form curves de�ned by three control points,
including quadratic non-rational and rational Bézier curves, generalized trigonometric and hyperbolic
curves and splines in tension. We have also shown that we can generate in�nite di�erent Miura's triangles
for di�erent α values. For future work, we would like to extend our theorem for higher-degree free-from
curves.
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Appendix: Generalized Trigonometric Basis Functions:

Gobithaasan and Miura's Recursive Algorithm For our new trigonometric basis, we can derive a recur-
sive algorithm similar to de Casteljau's algorithm. For simplicity we explain only the quadratic case, but
it can be extended to a general degree n by induction. To shorten expressions, we use u = 1 − S(t),
v = S(t) + C(t)− 1 and w = 1− C(t), where S(t) = sin πt

2 and C(t) = cos πt2 . Note that v
2 = 2uw, and

(u+ v + w)2 =

u(u+ v + w) + v(u+ v + w) + w(u+ v + w).
(2.16)

For a quadratic curve with this basis, �ve control points Pi (i = 0 . . . 4) are used, and the curve point
at t is evaluated as [

u v w
] P0 P1 P2

P1 P2 P3

P2 P3 P4

u v
w

 . (2.17)

Hence the algorithm repeats a simple blending of three points uPi−1 + vPi + wPi+1 to generate a point
on the given curve.

Miura's Triangle: We can also construct a triangle using the coe�cients of trigonometric basis functions,
similarly to Pascal's triangle. Below is a table of degree elevation, from the �rst row representing degree
1 to the sixth row representing degree 6:

1 1 1
1 2 4 2 1

1 3 9 8 9 3 1
1 4 16 20 34 20 16 4 1

1 5 25 40 90 74 90 40 25 5 1
1 6 36 70 195 204 328 204 195 70 36 6 1

(2.18)
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