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Introduction:
In classical straight skeleton problem, each edge of the polygon moves inwards with a constant unit
velocity in such a way that it remains essentially parallel to itself throughout the course of the shrinking
process. The regions swept by the polygon edges construct the faces of the straight skeleton structure
of the underlying polygon. During the shrinking process, polygon topology might change due to edge
collapse and edge split events. The edge collapse event takes place at an instance when at least one edge
of the polygon collapses down to a point, whereas the edge split event comes into play as at least one of
the vertices hits an edge or another vertex of the polygon.

The existing algorithms for the construction of straight skeletons are based on wave propagation and
they make use of the additional tools like kinetic triangulation [1] or motorcycle graph [2]. The weighted
version of the straight skeleton algorithm was pioneered in [3].

Contribution:
To the author knowledge, a predictor-corrector type incremental algorithm has never been used before
for the construction of straight skeletons. In this work an algorithm of this class is presented. In addition
to being original, the algorithm enjoys some very powerful features. First of all, it is simple, intuitive and
easy to implement. It is general that is it can be applied to any kind of closed planar polygons of arbitrary
complexity equally well. There is no room for exceptional cases. Algorithm works with raw input provided
by the underlying polygon. Construction of a kinetic triangulation or a motorcycle graph is not necessary.

The Algorithm:
Consider a closed planar polygon whose vertices change position in time with a prescribed constant
velocity. Recall that velocity of the vertices has a particular form in case of straight skeleton problem
such that an edge belonging to the polygon remains essentially parallel to itself during incremental motion.
Then for a given time increment

∆tn = tn+1 − tn (2.1)

the position of a vertex at time tn+1 can exactly be computed by direct integration as
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P n+1 = P n + ∆tnvP (2.2)

While the polygon is shrinking, there are two geometrical constraints to be respected. First constraint
states that polygon edges cannot swap during incremental motion. If edge swap happens, it indicates that
there are edges which collapse within the given time increment. The second constraint is the so-called
edge impenetrability which states that during incremental motion polygon cannot penetrate into itself. If
such a penetration occurs, it indicates that there are edges which split within the given time increment.
Position of the vertices computed by direct time integration is then used as a predictor if edge collapse
or edge split events take place during incremental motion. In such a case, predicted positions must be
corrected. Correction phase requires the determination of the exact time instances of the edge collapse
and edge split events.

  

 
Fig. 1: Edge swap (left). The instance of edge collapse (right)

Edge Collapse Event:
Edge collapse event within a time increment is detected by edge swap. An edge is swapped if it changes
direction (see Figure 1). Since vertices move along a linear path with a constant velocity, the instance of
an edge collapse event can exactly be computed by linear interpolation.

Projected lengths of a given vertex P corresponding to time steps tn and tn+1 are given, respectively,
by

ln = (P n −Bn) · uP (2.3)

and

ln+1 = (P n+1 −Bn+1) · uP (2.4)

Then one can parameterize projected length within a time increment as

l =
1

2
(1− ξ)ln +

1

2
(1 + ξ)ln+1 (2.5)

with ξ ∈ [−1, 1].
At the instance of edge collapse event the following equation must hold:

l = 0 (2.6)
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Inserting Eq. (2.5) into Eq. (2.6), local coordinate corresponding to edge collapse event is then com-
puted as

ξC = − lM
lD

(2.7)

where lM and lD are de�ned as

lM =
1

2
(ln+1 + ln)

lD =
1

2
(ln+1 − ln) (2.8)

One can also parameterize the time increment, similar to Eq. (2.5), as

∆t =
1

2
(1− ξ)0 +

1

2
(1 + ξ)∆tn (2.9)

By inserting ξC computed in Eq. (2.7), time increment corresponding to edge collapse event, see
Figure 1, is obtained as

∆tC =
1

2
(1 + ξC)∆tn (2.10)

  

 

Fig. 2: Edge penetration (left). The instance of edge split event (right)

Edge Split Event:
Edge split event within a time increment is detected by edge penetration (see Figure 2). Since the
vertices move along a linear path with constant velocities, exact instance of edge split event can again be
computed by using linear interpolation. For this purpose, we de�ne parameterization of vertices P and
T as

P =
1

2
(1− ξ)P n +

1

2
(1 + ξ)P n+1

T =
1

2
(1− ξ)T n +

1

2
(1 + ξ)T n+1 (2.11)

At the instance of edge split event, vertex P must be on the edge belonging to vertex T (see Figure 2).
Therefore, the following relation must hold:
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(P S − T S) · nT = 0 (2.12)

Inserting Eq. (2.11) into Eq. (2.12), local coordinate corresponding to edge split event is computed as

ξS = − (PM − TM ) · nT

(PD − TD) · nT
(2.13)

where PM and PD are de�ned as

PM =
1

2
(P n+1 + P n)

PD =
1

2
(P n+1 − P n) (2.14)

De�nitions for TM and TD follows from Eq. (2.14). Using the equation for the parameterization of
the time increment, Eq. (2.9), time increment corresponding to edge split event is obtained as

∆tS =
1

2
(1 + ξS)∆tn (2.15)

Predictor-Corrector Algorithm:
For a given time increment, predicted position of a typical vertex P is computed by direct integration as

P pred
n+1 = P n + ∆tnvP (2.16)

After predicted positions are computed, admissibility of the polygon is checked with respect to edge
collapse and edge split events using Eq. (2.6) and Eq. (2.12). If there is no event taking place, �nal
positions are equal to predicted positions, i.e.,

P n+1 = P pred
n+1 (2.17)

If there is an edge collapse event within the time increment, predicted positions are corrected as

P n+1 = P pred
n+1 + ∆PC (2.18)

with

∆PC = (∆tC −∆tn)vP (2.19)

Similarly, if there is an edge split event within the time increment, predicted positions are corrected
as

P n+1 = P pred
n+1 + ∆P S (2.20)

with

∆P S = (∆tS −∆tn)vP (2.21)

If both edge collapse and edge split events take place within the same increment, the one which
happens earlier is considered and the other one is disregarded.

Roof Modeling:
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Fig. 3: Di�erent roof types

In the roof construction using weighted straight skeleton algorithm, new position of the polygon is com-
puted based on predictor-corrector algorithm for a prescribed o�set in z direction. A roof is complete if
there remains no possibility to further apply an o�set. O�set polygons are kept and used to construct
the roof polygons, namely the straight skeleton structure, in a systematic way by paying special attention
to the vertices which are split, collapsed or colinear. In Figure 3, several representative non-exhaustive
examples are given.

Conclusions:
A predictor-corrector type incremental algorithm for the construction of weighted straight skeletons of
2D general planar polygons, possibly with holes, has been developed. The algorithm works with the
raw input provided by the underlying polygon. Additional tools like kinetic triangulation or motorcycle
graphs are not needed. Polygon edges which move at di�erent speeds and/or start to move at di�erent
times are supported by default.
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