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Introduction:
In the design of aesthetic objects, controlling the curvature variation of a curve segment is an important
task. Freeform curves, such as Bézier curves or B-spline curves, are widely used in many CAD systems.
Most of the work has been done for maintaining the curvature monotonicity, such as [5]. Controlling the
curvature variation of freeform curves, however, is not easy due to the complexity of curvature equation.

This paper introduces an intrinsically defined planar curve based on an explicit polynomial B-spline
curve and its G1 and G2 Hermite interpolation method, which is an extension of our previous work [8].
The advantage of using explicit B-spline curvature functions instead of explicit Bézier curvature functions
is that a wider variety of curvature variation can be represented by increasing the number of segments and
modifying the knots. Especially the curvature plot shown in Fig. 3(d) cannot be represented in previous
methods [8, 6]. Thus the proposed method can match a wider variety of G2 Hermite conditions. In the
proposed approach, the curvature plot is specified in terms of an explicit B-spline curve and the explicit
B-spline curve is integrated to generate a curve segment such that given G1 or G2 Hermite interpolation
conditions are satisfied. As an application of the proposed curve, we show a method of controlling the
curvature variation interactively by modifying control curvatures shown on the curvature comb satisfying
G1 or G2 Hermite conditions.

Curves based on Explicit B-spline Curvature Functions:

This section describes an intrinsically defined curves based on an explicit polynomial B-spline curva-
ture function. To simplify the description, we consider a curve in the standard form where the starting
point and its tangent are the origin and [0 1]T, respectively. A curve in a general position can be obtained
by performing an appropriate transformation to the curve in the standard form.

Let s be the arc length and κ(s) be the curvature function. The tangential angle θ(s) is computed by

θ(s) =

∫ s

0

κ(u)du. (2.1)

The curve position P(s) is

P(s) =

[ ∫ s

0
cos(θ(u))du∫ s

0
sin(θ(u))du

]
. (2.2)
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Eqn. (2.1), (2.2) are standard equations in differential geometry. If we use the curvature function of
log-aesthetic curves [7] as κ(s), Eqn. (2.2) immediately becomes the equation of log-aesthetic curves.

An explicit polynomial B-spline curve of degree n with control points pi(i = 1, 2, . . . ,m) and knots
t1, t2, . . . , tm+n−1 in polar form [2, 4] is a curve whose x coordinate is the parameter t and y coordinate
is

p(t) =

m∑
i=1

Bn
i (t)pi (t ∈ [tn, tm]) (2.3)

Here, Bn
i (t) is a B-spline basis function. In explicit B-spline curves, t coordinate ci for each control point

pi, known as Greville abscissa, is the average of n consecutive knots [4]:

ci =
ti + ti+1 + · · ·+ ti+n−1

n
. (2.4)

Let st be the arc length of a curve segment and κi(i = 1, 2, . . . ,m) be control curvatures. Without
loss of generality, we assume tn = 0 and tm = 1 to make the parameter range of an explicit B-spline curve
[0, 1]. The curvature function κ(s) in terms of arc length s in explicit polynomial B-spline form is

κ(s) =

m∑
i=1

Bn
i (s/st)κi (s ∈ [0, st]). (2.5)

Plugging Eqn. (2.5) into Eqn. (2.1) and then equation (2.1) into Eqn. (2.2), curve points in the standard
form can be computed. Note that to compute Eqn. (2.1), numerical integration is not necessary. This
integration can be computed by converting an explicit B-spline curve to explicit Bézier curves using knot
insertion and using the characteristics of explicit Bézier curves [4, 8].

In an explicit B-spline curvature function, detecting an inflection point and curvature extrema is
straightforward. To detect an inflection point, we check if the derivative of κ(s) with respect to s becomes
0 using Bézier clipping [3]. Similarly, to detect curvature extrema, we need to check if κ(s) becomes 0
using Bézier clipping. For a low degree curvature function, we can directly compute such points.

G1 and G2 Hermite Interpolation Method:

In G1 Hermite interpolation, a starting point Ps and an endpoint Pe with their unit tangent vectors
ts and te are given. In G2 Hermite interpolation, control curvatures κs and κe at Ps and Pe are also
given. In case of G2 Hermite interpolation, the first and the last control curvatures are set to κ1 = κs
and κm = κe.

In G1 or G2 Hermite conditions, we use the standard form where Ps is placed at the origin and
ts = [1 0]T. Let θd be the angle formed by ts and te. Thus te = [cos(θd) sin(θd)]

T. Given the degree n,
the number control curvatures m and κi(i = 1, . . . ,m), the arc length st of the curve segment is given by

st =
θd∫ 1

0
(
∑m

i=1B
n
i (t)κi) dt

. (2.6)

In G1/G2 Hermite interpolation in the standard form, the generated curve must satisfy the following
conditions:

(a) P(0) = [0 0]T, (b) P(st) = [0 1]T,

(c) [cos(θ(0)) sin(θ(0))]T = ts, (d) [cos(θ(st)) sin(θ(st))]
T = te. (2.7)
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Conditions (a), (b) are always satisfied by using Eqn. (2.1) and (2.2), respectively. Condition (d) is
always satisfied by using the arc length st computed by Eqn. (2.6). The remaining condition (c) is
satisfied by an optimization that minimizes |P(st)−Pe|.

Fig. 1 shows typical cases how the control curvatures are computed. In G1 Hermite interpolation,
we typically use κ1 and κm as optimization parameters and κ2, . . . , κm−1 are either user-specified or
computed by some kind of interpolation, such as linear interpolation. In G2 Hermite interpolation,
κ1(= κs) and κm(= κe) are given in addition to G1 Hermite conditions. Therefore, we typically use κ2
and κm−1 as optimization parameters and compute κ3, . . . , κm−2 similarly by some kind of interpolation
or specify them.
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interpolation or user-specified
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(a) G1 Hermite interpolation (b) G2 Hermite interpolation

Fig. 1: Typical G1 and G2 Hermite interpolations

In our implementation, we use an interpolation using a parameter p such that the curvature plot
changes depending on the value of p. Fig. 2 shows examples of typical G1 Hermite interpolation where
κ1 and κ6 are used as optimization parameters. κ2, . . . and κ5 are equal to κ6 when p = −1, linearly
interpolated when p = 0, and equal to κ1 when p = 1. When p takes a value between between -1 and 0,
control curvatures are smoothly interpolated.

For typical G1 Hermite interpolation, we set i1 = 1 and im = m. The monotonicity of curvature
is always guaranteed if p ∈ [−1, 1], though the curve may include an inflection point. For typical G2

Hermite interpolation, we set i1 = 1 and im = m− 1.

Results:
Fig. 2 shows examples of generated curves and their curvature plots for typical G1 Hermite conditions.
Note that κ values of curvature plots are scaled so that the curvature plot fits in the graph. In Fig.2(a)-
(c), the number of control curvatures is 6 and the knot vector is [0, 0, 0, 13 ,

2
3 , 1, 1, 1] but the value of p is

different. In the curvature plot, black circles represent control curvatures κ1, . . . , κ6 from left to right.
Tick marks in t-axis represent knots ti. The rightmost tick mark is placed at t = 1. Since we use Bézier
end conditions, the multiplicity of knots at t = 0 and t = 1 are set to n. By modifying the value of p,
the curve shape and the curvature plot can be variously controlled for the same G1 Hermite condition
guaranteeing the monotonicity of curvature. Depending on G1 Hermite conditions, the generated curve
may include an inflection point.

In G2 Hermite interpolation, we are given κs and κe in addition to G1 Hermite conditions. Let θe
be the angle between Pe −Ps and ts. Fig. 3 shows examples of G2 Hermite interpolation for θe = 1

9π,
θd = 1

3π and |Pe − Ps| = 1. Fig. 3(a) shows the region of (κs, κe) where curves with monotonically
varying curvature can be generated. See [1, 8] for details. In Fig. 3 (b),(c),(d),(e), (κs, κe) are the points
denoted as a, b, c and d in Fig. 3(a), respectively. The degree and the number of control curvatures
are 3 and 8, respectively. The control curvatures and the knots are set manually to make the curvature
monotonically varying. Based on these results and other experiments we have performed, proposed curves
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Fig. 2: G1 Hermite interpolation using explicit cubic B-spline curves

can match a wide variety of G2 Hermite conditions by appropriately specifying the number of control
points, control curvatures and a knot vector. Especially for the pairs of (κs, κe) denoted as a, b, c, G2

Hermite interpolation with monotonically varying curvature is impossible by the previous method[8].
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Fig. 3: Examples of G2 Hermite interpolation

Fig. 4 (a) shows a curve segment and its curvature plot satisfying given G1 Hermite conditions. On
the curvature comb, control curvatures are plotted as black dots in the normal direction of the curve.
In Fig. 4 (b), control curvature κ4 indicated by an arrow is moved. To control the curvature variation,
the control curvature can be interactively moved in the normal direction of the curve. To modify κ4,
the scaled (signed) difference between the original position of κ4 and the moved position in the normal
direction of the curve is added to the original κ4. After κ4 is modified, an optimization is performed to
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satisfy the given G1 Hermite conditions. In this example, κ1 and κ6 are used for optimization parameters.
In Fig. 4 (c), control curvature κ5 indicated by an arrow is further moved. Note that large movement
of a control curvature may generate an undesirable curve shape including inflection points and curvature
extrema. Controlling a control curvature can also be done in the curvature plot.
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Fig. 4: Direct control of a control curvature on the curvature comb

Conclusions:
In this paper, we proposed intrinsically defined curves based on explicit B-spline curvature functions.
In the proposed method, two of the control curvatures are used as an optimization for fitting G1 or G2

Hermite interpolations and other control curvatures (except for two control curvatures specified in case of
G2 Hermite interpolation) are either interpolated or user-specified. Given G1 or G2 Hermite interpolation
conditions, the proposed curve has a wider variety of curvature variation than our previous work[8] due to
the use of an explicit B-spline curvature function. We also proposed a method for interactively controlling
the curvature variation by moving the control curvature shown on the curvature comb or curvature plot.
Future work includes a method for covering all the viable region of G2 Hermite interpolation and the
extension to space curves
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